
SomeWhere: a scalable peer-to-peer

infrastructure for querying distributed ontologies

M.-C. Rousset2

joint work with P. Adjiman1, P.Chatalic, F. Goasdoué, and L.Simon1

1 LRI, bâtiment 490, Université Paris-Sud 11, 91405 Orsay Cedex, France
2 LSR-IMAG, BP 72, 38402 St Martin d’Heres Cedex, France

Abstract. In this invited talk, we present the SomeWhere approach
and infrastructure for building semantic peer-to-peer data management
systems based on simple personalized ontologies distributed at a large
scale. Somewhere is based on a simple class-based data model in which
the data is a set of resource identifiers (e.g., URIs), the schemas are
(simple) definitions of classes possibly constrained by inclusion, disjunc-
tion or equivalence statements, and mappings are inclusion, disjunction
or equivalence statements between classes of different peer ontologies. In
this setting, query answering over peers can be done by distributed query
rewriting, which can be equivalently reduced to distributed consequence
finding in propositional logic. It is done by using the message-passing
distributed algorithm that we have implemented for consequence finding
of a clause w.r.t a set of distributed propositional theories. We summa-
rize its main properties (soundness, completeness and termination), and
we report experiments showing that it already scales up to a thousand of
peers. Finally, we mention ongoing work on extending the current data
model to RDF(S) and on handling possible inconsistencies between the
ontologies of different peers.

1 Overview of SomeWhere

SomeWhere promotes a ”small is beautiful” vision of the Semantic Web [1]
based on simple personalized ontologies (e.g., taxonomies of atomic classes) but
which are distributed at a large scale. In this vision of the Semantic Web intro-
duced by [2], no user imposes to others his own ontology but logical mappings
between ontologies make possible the creation of a web of people in which person-
alized semantic marking up of data cohabits nicely with a collaborative exchange
of data. In this view, the Web is a huge peer-to-peer data management system
based on simple distributed ontologies and mappings.

For scalability purpose, we have chosen a simple class-based data model in
which the data is a set of resource identifiers (e.g., URIs), the ontologies are
(simple) definitions of classes possibly constrained by inclusion, disjunction or
equivalence statements, and mappings are inclusion, disjunction or equivalence
statements between classes of different peer ontologies. That data model is in



accordance with the W3C recommendations since it is captured by the propo-
sitional fragment of the OWL ontology language (http://www.w3.org/TR/owl-
semantics).

Query answering through ontologies is achieved using a rewrite and evaluate
strategy. In SomeWhere the query rewriting problem can be reduced to a con-
sequence finding problem in distributed propositional theories. It is performed by
a message-passing algorithm named DeCA: Decentralized Consequence finding
Algorithm [3]. As a result, query answering in SomeWhere is sound, complete
and terminates. Moreover, the detailed experiments reported in [4] show that it
scales up to 1000 peers.

2 Illustrative example

We illustrate the SomeWhere data model on a small example of four peers
modeling four persons Ann, Bob, Chris and Dora, each of them bookmarking
URLs about restaurants they know or like, according to their own taxonomy for
categorizing restaurants.

Ann, who is working as a restaurant critic, organizes its restaurant URLs
according to the following classes:

• the class Ann:G of restaurants considered as offering a ”good” cooking,
among which she distinguishes the subclass Ann:R of those which are rated:
Ann:R ⊑ Ann:G

• the class Ann:R is the union of three disjoint classes Ann:S1, Ann:S2,
Ann:S3 corresponding respectively to the restaurants rated with 1, 2 or 3 stars:

Ann:R ≡ Ann:S1 ⊔ Ann:S2 ⊔ Ann:S3

Ann:S1 ⊓ Ann:S2 ≡ ⊥ Ann:S1 ⊓ Ann:S3 ≡ ⊥

Ann:S2 ⊓ Ann:S3 ≡ ⊥

• the classes Ann:I and Ann:O, respectively corresponding to Indian and
Oriental restaurants

• the classes Ann:C, Ann:T and Ann:V which are subclasses of Ann:O de-
noting Chinese, Täı and Vietnamese restaurants respectively: Ann:C ⊑ Ann:O,
Ann:T ⊑ Ann:O, Ann:V ⊑ Ann:O

Suppose that the data stored by Ann that she accepts to make available deals
with restaurants of various specialties, and only with those rated with 2 stars
among the rated restaurants. The extensional classes declared by Ann are then:
Ann:V iewS2 ⊑ Ann:S2, Ann:V iewC ⊑ Ann:C, Ann:V iewV ⊑ Ann:V ,
Ann:V iewT ⊑ Ann:T , Ann:V iewI ⊑ Ann:I

Bob, who is fond of Asian cooking and likes high quality, organizes his restau-
rant URLs according to the following classes:

• the class Bob:A of Asian restaurants

• the class Bob:Q of high quality restaurants that he knows



Suppose that he wants to make available every data that he has stored. The ex-
tensional classes that he declares are Bob:V iewA and Bob:V iewQ (as subclasses
of Bob:A and Bob:Q): Bob:V iewA ⊑ Bob:A, Bob:V iewQ ⊑ Bob:Q

Chris is more fond of fish restaurants but recently discovered some places
serving a very nice cantonese cuisine. He organizes its data with respect to the
following classes:

• the class Chris:F of fish restaurants,

• the class Chris:CA of Cantonese restaurants

Suppose that he declares the extensional classes Chris:V iewF and Chris:V iewCA

as subclasses of Chris:F and Chris:CA respectively:
Chris:V iewF ⊑ Chris:F , Chris:V iewCA ⊑ Chris:CA

Dora organizes her restaurants URLs around the class Dora:DP of her pre-
ferred restaurants, among which she distinguishes the subclass Dora:P of pizze-
rias and the subclass Dora:SF of seafood restaurants.

Suppose that the only URLs that she stores concerns pizzerias: the only exten-
sional class that she has to declare is Dora:V iewP as a subclass of Dora:P :
Dora:V iewP⊑Dora:P

Ann, Bob, Chris and Dora express what they know about each other using
mappings stating properties of class inclusion or equivalence.

Ann is very confident in Bob’s taste and agrees to include Bob’ selection
as good restaurants by stating Bob:Q ⊑ Ann:G. Finally, she thinks that Bob’s
Asian restaurants encompass her Oriental restaurant concept: Ann:O ⊑ Bob:A

Bob knows that what he calls Asian cooking corresponds exactly to what
Ann classifies as Oriental cooking. This may be expressed using the equivalence
statement : Bob:A ≡ Ann:O (note the difference of perception of Bob and Ann
regarding the mappings between Bob:A and Ann:O)

Chris considers that what he calls fish specialties is a particular case of Dora
seafood specialties: Chris:F ⊑ Dora:SF

Dora counts on both Ann and Bob to obtain good Asian restaurants : Bob:A
⊓ Ann:G ⊑ Dora:DP

Figure 1 describes the resulting overlay network. In order to alleviate the
notations, we omit the local peer name prefix except for the mappings. Edges are
labeled with the class identifiers that are shared through the mappings between
peers.

3 Query Rewriting in SomeWhere through Propositional

Encoding

In SomeWhere, each user interrogates the peer-to-peer network through one
peer of his choice, and uses the vocabulary of this peer to express his query.
Therefore, queries are logical combinations of classes of a given peer ontology.



Dora

ontology :

DP ⊑ ⊤,
P ⊑ DP , SF ⊑ DP,

V iewP ⊑ P

mappings :

Bob:A ⊓ Ann:G ⊑ Dora:DP

Bob

ontology :

A ⊑ ⊤, Q ⊑ ⊤,
V iewA ⊑ A,
V iewQ ⊑ Q

mappings :

Bob:A ≡ Ann:O

Chris

ontology :

F ⊑ ⊤, CA ⊑ ⊤,
V iewF ⊑ F ,V iewCA ⊑ CA

mappings :

Chris:F ⊑ Dora:SF

Ann

ontology :

G ⊑ ⊤, O ⊑ ⊤, I ⊑ ⊤,
R ⊑ G,
(S1 ⊔ S2 ⊔ S3) ≡ R,
S1 ⊓ S2 ≡ ⊥,
S1 ⊓ S3 ≡ ⊥,
S2 ⊓ S3 ≡ ⊥,
(C ⊔ V ⊔ T ) ⊑ O,
V iewC ⊑ C,
V iewV ⊑ V ,
V iewT ⊑ T ,
V iewI ⊑ I ,
V iewS2 ⊑ S2
mappings :

Ann:O ⊑ Bob:A,
Bob:Q ⊑ Ann:G

Dora:SF

Bob:A

Ann:G

Bob:Q,

Bob:A,

Ann:O

Fig. 1. The restaurants network

The corresponding answer sets are expressed in intention in terms of the
combinations of extensional classes that are rewritings of the query. The point is
that extensional classes of several distant peers can participate to the rewritings,
and thus to the answer of a query posed to a given peer.

In general, finding all answers in a peer data management system is a critical
issue [5]. In our setting however, we are in a case where all the answers can be
obtained using rewritings of the query: it has been shown [6] that when a query
has a finite number of maximal conjunctive rewritings, then all its answers (a.k.a.
certain answers) can be obtained as the union of the answer sets of its rewritings.

In the SomeWhere setting, query rewriting can be equivalently reduced to
distributed reasoning over logical propositional clausal theories by a straighfor-
ward propositional encoding of the query and of the distributed ontologies and
mappings of a SomeWhere network. It consists in transforming the query and
each ontology and mapping statement into a propositional formula using class
identifiers as propositional variables.

The propositional encoding of a class description D, and thus of a query, is
the propositional formula Prop(D) obtained inductively as follows:

• Prop(⊤) = true, Prop(⊥) = false

• Prop(A) = A, if A is an atomic class

• Prop(D1 ⊓ D2) = Prop(D1) ∧ Prop(D2)

• Prop(D1 ⊔ D2) = Prop(D1) ∨ Prop(D2)



• Prop(¬D) = ¬(Prop(D))

The global schema S of a SomeWhere peer-to-peer network is the union of
the ontology and mapping statements distributed over the network. Its propo-
sitional encoding is the distributed propositional theory Prop(S) made of the
formulas obtained inductively from the statements in S as follows:

• Prop(C ⊑ D) = Prop(C) ⇒ Prop(D)

• Prop(C ≡ D) = Prop(C) ⇔ Prop(D)

• Prop(C ⊓ D ≡ ⊥) = ¬Prop(C) ∨ ¬Prop(D)

We have shown in [3] that the maximal conjunctive rewritings of a query q

in SomeWhere are the negation of the prime proper implicates of ¬q w.r.t the
propositional encoding of the schema. We use the distributed message-passing
DeCA algorithm [3] to compute them.

4 Ongoing work

We are involved in two extensions of SomeWhere. The first one concerns
SomeRDFS which extends the very simple class-based data model of Some-

Where to RDFS. The second one deals with possible inconsistencies of the
global schema of SomeWhere. Though the data model of SomeWhere is very
simple, it allows negation. It is thus very likely that mappings between consistent
ontologies cause inconsistencies at the global level. The problem is twofold: the
inconsistencies have to be detected at join time ; they must then be handled at
query time to compute only well-founded answers.

4.1 Extending the data model to RDFS

In SomeRDFS the ontologies and mappings are expressed in the core fragment
of RDFS allowing to state (sub)classes, (sub)properties, typing of domain and
range of properties. The mappings that we consider in SomeRDFS are inclu-
sion statements between classes or properties of two distinct peers, or typing
statements of a property of a given peer with a class of another peer. Therefore,
mappings are RDFS statements involving vocabularies of different peers which
thus establish semantic correspondances between peers.

We have shown that query answering in SomeRDFS can be achieved using a
rewrite and evaluate strategy, and that the corresponding rewriting problem can
be reduced to the same consequence finding problem in distributed propositional
theories as in [3]. Moreover, the consequence finding problem resulting from the
propositional encoding of the fragment of RDFS that we consider is tractable
since the resulting propositional theories are reduced to clauses of length 2 for
which the reasoning problem is in P. The experiments reported in [4] show that
it takes in mean 0.07s to SomeWhere for a complete reasoning on randomly
generated sets of clauses of length 2 distributed on 1000 peers.



4.2 Dealing with inconsistencies

Since peer ontologies are personalized they model possibly different viewpoints.
Therefore, the global schema made of the union of the local ontologies and the
mappings may be inconsistent even if each local ontology is consistent. Given
the lack of centralized control, all peers should be treated equally. It would be
unfair to refuse the join of a new peer just because the resulting global schema
becomes inconsistent. Our choice is to accept the presence of inconsistency. The
problem is first to detect inconsistencies, second to reason in spite of them in a
satisfactory way. We thus compute only well-founded answers to a given query,
i.e., answers that can be computed w.r.t. to a consistent subset of the global
schema

We assume each local ontology to be consistent. Therefore, the possible in-
consistencies result from interactions between local ontologies and are caused by
mappings. Before adding a mapping, a peer checks whether this mapping (pos-
sibly with other mappings) can be the cause of some inconsistency. In that case,
the peer stores locally as a nogood the set of mappings involved in the corre-
sponding inconsistency. At query time, the concerned distributed nogoods must
be collected to check whether the answers under construction are well-founded:
an answer is well-founded if the set of mappings used to infer it is not included in
any nogood. This can be done using the distributed algorithms extending DeCA

that are designed and studied in [7].

References

1. Rousset, M.C.: Small can be beautiful in the semantic web. In: ISWC. (2004)
2. Plu, M., Bellec, P., Agosto, L., van de Velde, W.: The web of people: A dual view

on the WWW. In: WWW. (2003)
3. Adjiman, P., Chatalic, P., Goasdoué, F., Rousset, M.C., Simon, L.: Distributed

reasoning in a P2P setting: Application to the semantic web. Journal of Artificial
Intelligence Research (JAIR) (2006)

4. Adjiman, P., Chatalic, P., Goasdoué, F., Rousset, M.C., Simon, L.: Scalability study
of P2P consequence finding. In: IJCAI. (2005)

5. Halevy, A., Ives, Z., Suciu, D., Tatarinov, I.: Schema mediation in peer data man-
agement systems. In: ICDE. (2003)

6. Goasdoué, F., Rousset, M.C.: Answering queries using views: a KRDB perspective
for the semantic web. ACM Journal - Transactions on Internet Technology (TOIT)
4(3) (2004)

7. Chatalic, P., Nguyen, G., M-C.Rousset: Reasoning with inconsistencies in proposi-
tional peer-to-peer inference systems. Proceedings of ECAI (2006)


