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ABSTRACT

We address the problem of controlling information leakage
in a concurrent declarative programming setting. Our aim
is to define verification tools in order to distinguish be-
tween authorized, or declared, information flows such as
password testing (e.g., ATM, login processes, etc.) and non-
authorized ones. In this paper, we first propose a way to
define security policies as confluent and terminating rewrite
systems. Such policies define how the privacy levels of in-
formation evolve. Then, we provide a formal definition of
secure processes with respect to a given security policy. We
also define an actual verification algorithm of secure processes
based on constraint solving.

1. INTRODUCTION

The problem of the preservation of the confidentiality of
data represents nowadays a prominent feature of computer
systems. This is especially true in a context where programs
and data may move around along communication networks.
The usual theoretical approach of this problem, initiated
by Goguen and Meseguer in [12], uses the notion of non-
interference. Roughly, the idea is that two parts of a system
are non-interfering if what it is done by one part has no
effect on the other part and vice versa. Hence a program, or
a system respects secrecy if there are no interferences, or no
information leakage, from secret data to public ones. This
approach relies heavily on a precise formalization of what
it is intended by the words “no effect”. Indeed, it amounts
to the problem of equivalence of behaviors which is not a
trivial problem in non-deterministic settings [26].

A great deal of work has been done along these lines.
There are mainly two directions. The first one is about
the programming paradigms involved: imperative e.g., [30],
functional e.g., [22], process algebras e.g., [14, 1], functional
and communicating processes e.g., [32], imperative and com-
municating processes e.g., [28, 2] and multi-paradigm sys-
tems e.g., [7]. The second one is about the context in
which non-interference is studied. Indeed different confine-
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ment properties, such as deterministic, nondeterministic and
probabilistic e.g., [31], can be defined. See [27] for a com-
plete overview.

A common feature of these works is that they consider
information leakage from a very strict point of view de-
spite the fact that in real world applications, such absolute
non-interference properties can hardly be obtained e.g., [25].
The notion of approximate non-interference e.g., [20, 19],
along with declassification and other weakenings of non-
interference e.g., [34, 11] have been only recently investi-
gated. Following this line of study, we propose a formaliza-
tion in which the user may declare its security policy. The
idea is that the user may declare that some functions are
allowed to provoke information leakage. We call such func-
tions declassifying functions. This formalization extends
previous works in the following directions: the expressivness
of the programing system and the expressivity of security
policies.

A typical example where declassifying functions are used
is the mechanism of password. It is widely spread in real
life. Think of Automated Teller Machines, log on proce-
dures (on computers, web sites with restricted access...), re-
stricted areas, PIN for cellular phones etc. Schematically,
the situation is the following : to access secret areas one has
to enter the right password to a controller. From a strict
non-interference point of view, there is a forbidden infor-
mation leakage in such situations. Indeed, it is possible to
try all possible passwords to be finally granted the access to
the restricted area. Therefore private information, e.g. the
knowledge of the password, may influence public behavior,
e.g. a hacker randomly submitting a number may guess the
password by chance. Nevertheless, this kind of leakage are
controlled through the declaration of declassifying functions.
Therefore such information leakage has to be considered as
harmless. Firstly because information leakage is only al-
lowed for some known parts, namely the ones checking the
password. Therefore it is not possible to directly disclose
private data. Secondly, because it is possible to define a
system policy that deters brute-force attacks: for instance
the system may become inactive after some unsuccessful at-
tempts (after three non valid PIN, the ATM retains the
credit card). Another example of such controlled informa-
tion leakage is the case of public key cryptography. Suppose

personal or classroom use is granted without fee provided that copies arethat encrypted data are public, since both the encryption
not made or distributed for profit or commercial advantage and that copies key and algorithm are known it is theoretically possible to

bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
PPDP’05,July 11-13, 2005, Lisbon, Portugal.
Copyright 2005 ACM 1-59593-090-6/05/0007%5.00.

encrypt every file of some fixed size to find out which one
gives the same encrypted file. It is a broader version of
the password verification done in UNIX systems in which en-



crypted password are stored and readable by anyone.

Note that this scheme is not related with cryptographic
issues. Declassifying functions simply play the role of an
interface between security levels, they are not required to be
cryptographic functions or whatsoever. It is out of the scope
of our analysis to check if declassifying are really “safe” from
a practical point of view. What we want to do is to be able
to study the security of a process with respect to a given
security policy.

We want to formalize the following idea: if a function
is declared as declassifying by a security policy, we make
abstraction of the leakage coming from the use of this func-
tion. In other words a process is secure if the only informa-
tion leakage it produces are sound with the declared security
policy.

We made a first study of this idea in [5]. In the present
paper we enrich our previous work and propose a new way
to define a security policy based on rewriting systems. It
gives a way to define richer security policies than in earlier
works. We also provide an algorithm to check if a process
is secure with respect to a given security policy. It is based
on an abstract operational semantics generating constraints
over privacy levels.

We start by the presentation of our multi-paradigm com-
putation model in section 2. The interest in using such a
calculus is that its expressiveness encompasses many pro-
gramming paradigms including imperative, declarative and
concurrent ones. It makes our analysis easy to adapt to
many other programming paradigms. Then, in section 3,
we give a precise definitions of what we intend by security
policy and security properties of processes and their impli-
cations in terms of confidentiality. We give an algorithm to
check whether a process is secure with respect to a given
security policy in section 4. We discuss related works in
section 5 and conclude in section 6.

2. A FRAMEWORK FOR CONCURRENT
DECLARATIVE PROGRAMMING

The computational model used in this paper is a sim-
plified version of the one proposed in [8, 9]; we refer to
these works for a more detailed presentation of the com-
plete model and its implementation. Roughly speaking, a
program or a component in our framework consists of two
parts K = (F,IR). IR is a set of process definitions and F’
is a declarative program, i.e., a set of formulee (here, we con-
sider Term Rewrite Systems (TRS)), which we call a store.
We assume the reader is familiar with TRS (see, e.g., [4]).

The execution model of a component can be schematized
as follows. Processes communicate by modifying a common
store F, i.e., by altering it in a non-monotonic way, for exam-
ple by simply redefining constants (e.g., adding a message in
a queue) or by adding or deleting formulee in F'. Hence, the
execution of processes will cause the transformation of the
store F'. Every change of the store is the result of the execu-
tion of an action. A store I is used to evaluate expressions
(i.e. normalization of terms in our setting).

We now define the different parts of our computational
model. The first step is to formalize the notion of store,
where constants and functions are defined.

DEFINITION 1. A store is a conditional TRS F = (X, R),
composed of a signature ¥ and a set of rules (or formula)
R. A signature X is a set of function symbols (to simplify,

we consider unsorted signatures in this paper). A term over
3 and variables X is either a variable x € X or an expres-
ston of the form f(t1,...,tn), where f € ¥ is a function
symbol of arity (number of arguments) n and the t;’s are
terms. We note T'(3, X) the set of terms over the signature
Y and variables X. We note Var(t) the set of variables of t.
A term t without variables, i.e., Var(t) = 0 is called ground.
Rewrite Rules (elements of R) are of the form

l—r|c

which has to be read: “l rewrites into r if ¢ holds”, where [
and r are terms, and c is a conjunction of equations of the
form t1 = ta such that Var(r) U Var(c) C Var(l)

Furthermore, we use the function eval(F,t), which evalu-
ates the term t into its normal form with respect to the store
F = (3, R) (in this paper, we assume rewrite systems to be
confluent and terminating). The actual (rewriting) strategy
used by the operational semantics is not important in this
paper. We say that equation ¢; = t2 holds if the two terms
have the same normal form.

We write FU(l — r | ¢) (resp. F\ (I — r | ¢)) the
store F' to (resp. from) which the rule I — r | ¢ has been
added (resp. removed). We write F o (I — r | ¢) the store
equivalent to store F' where all rules of left-hand side [ (i.e.
rules of the form I — 7’ | ¢’) have been erased and rule
I — 7| c has been added.

Actions allow the modification of stores. We distinguish
two kinds of actions: (i) elementary actions like assignment,
addition or removal of rules, and (ii) guarded actions that
are executed atomically only if their guards hold, providing
high level synchronization.

DEFINITION 2. An action « is a pair consisting of a guard
g and a sequence of elementary actions a;, written: [g =
aij...;an]. A guard is a conjunction of equations whose
validity in the store is decidable. The elementary actions a
we consider in this paper are assignment (:=), addition of a
rule to the store (tell), removal of a rule from the store (del)
and (skip) the (elementary) action that does nothing.

Basic processes in our model are succ (the process which
terminates successfully), guarded actions «, or process calls
q(t1,...,tn). As usual in process algebra (see, e.g., [10]), we
provide some operators for combining processes: parallel (||)
and sequential (;) composition as well as nondeterministic
choice (+). Hence we have the following definition.

DEFINITION 3. Process definitions is provided by a set
of guarded commands TR = (II, Ri), composed of a set of
process signature I1 and a set of guarded commands Rp. 11
is a set of process symbols. A process term, p, over Il is an
expression defined by the following grammar: p ::= succ |
g=al[pmplpliplp+plalt,... tn) where q € II and
t, €T(X, X).

A process q is defined by a sentence of the following form
representing m nondeterministic guarded commands :

Ol(l’h---,wn) ~ Z:’;l Qi Pi

where (for each i) a; is an action and p; is a process term,
such that the free variables of a; and p; are included in the
parameter set {x1;...;Tn}.



DEFINITION 4. A program or a component K is a tu-
ple (F,IR), where F is a store and IR is a set of process
definitions.

The operational semantics of our execution model is de-
fined by a transition system, defined by the rules shown in
Fig. 1. The transition relation — describes the modifica-
tion of the store by the execution of sequences of elemen-
tary actions. The execution (run) of processes is described
by the transition relation —. Transitions are of the form
(F,p) — (F',p') where F is a store and p is a process
term. The relation — is defined modulo the (classical)
equivalence relation =, which states that the operators ||
and + are commutative and succ may vanish. Notice that
the execution of actions is atomic (see rule (Pguerd))-

EXAMPLE 1. As a first example, consider a direct trans-
lation of an example given in [2], showing how control flow
can lead to information flow. It shows the limitations of the
analysis of [30] in a concurrent context, and it is a simpli-
fied version of the example given in [29]. This example is
studied, from a secrecy point of view in [7].

o << [ca =TT = SPY :=TT; cg := TTJ; succ
B <« [cg =TT = SPY :=FF; cq := TTJ; succ
v <« ([PIN =FF = cq := TT];succ)+

([PIN =TT = cp := TT]; succ)

PIN,SPY ,ca, cg, TT and FF are constants. co and cg are
initialized to FF. Notice that execution of || B || v copies
the (secret) value PIN into the (public) constant SPY .

3. SECURITY POLICY

In this section we present how to declare a security pol-
icy by means of (confluent and terminating) rewrite systems.
Normal forms of such security policies are elements of a finite
lattice representing different privacy levels of data. There-
fore for each function f we associate a set of rewrite rules
of the form f(wl,z) — w2, where w1, and w2 are elements
of a lattice of privacy levels. At a first glance these rewrite
rules may be seen as security profiles for functions. Such
rewrite systems define a security policy modeling assump-
tions made by the programmer about the security behavior
of functions. For instance it is sensible to declare that the
result of the application of an encryption function onto pri-
vate data is public. However, it is possible to define a se-
curity policy including the following rule id(z) — L, where
id stands for the classical identity function. In this case,
the security policy is somewhat clumsy since id(d), which
is evaluated to the lowest privacy level, would be a public
version of any information d (secret or not). The fact that
a security policy is clumsy or not is out of the scope of this
paper and thus not discussed here. The reader should notice
that for each function f is associated (at least) two rewrite
systems: a classical one dedicated to data processing (e.g.,
f(xz) — z) and a second one defining a security policy (e.g.,
FT) = 1, (1) — 1.

Apart from security policies, our aim is to give a for-
mal definition of secure processes (threads) in presence of
a given security policy. For that we should distinguish au-
thorized information leakage declared within a security pol-
icy, from unauthorized ones corresponding to classical in-
terference issues. This is done through a specific evaluation
process in which declassified terms are evaluated in a single

store (therefore the evaluation of a declassified term will be
the same for two different stores). We develop a notion of
process equivalence accordingly. Then it is possible to state
a non-interference like property (information may only flow
from lower privacy levels to higher ones).

We start by recalling some technical definitions on rewrite
systems.

3.1 Technical Preliminaries

We give in this subsection some technical definitions about
rewriting that we use later. More details can be found for
example in [4].

Let R be a rewrite system. A substitution is a map-
ping 0 : X — A. Substitutions are extended to morphisms
on terms by o(f(t1,...,tn)) = f(o(t1),...,0(ts)) for every
term f(ti,...,tn). An occurrence or position is a sequence
of positive integers identifying a subterm in a term. For
every term t, the empty sequence denoted by A, identifies ¢
itself. For every term of the form f(¢1,...,tx), the sequence
i - p, where i is a positive integer not greater than k£ and
p is a position, identifies the subterm of ¢; at p. Positions
are ordered by prefix order, that is a position p is greater
than position p’ if p’ is a prefix of p. The subterm of ¢ at p
is denoted by t|, and the result of replacing t|, with s in ¢
is denoted by t[s],. A reduction step is an application of a
rewrite rule to a term, i.e., ¢ —, , s if there exist a position
p, a rewrite rule p = I — r | ¢ and a substitution ¢ with
tlp = o(l), o(c) holds and s = t[o(r)]p. In this case we say t
is rewritten (at position p) to s. We will omit the subscripts
p and p if they are clear from the context. We may also
write t —p s or t — s. We write — g the reflexive and tran-
sitive closure of —g. <»g is the reflexive, symmetric and
transitive closure of —g.

A term t is reducible to a term s if t = s. A term t is
called irreducible or in mormal form if there is no term s
with t — s. A term s is a normal form of t if t is reducible
to the irreducible term s.

A TRS R is confluent if for all terms t¢1,t2 and ts such
that t1 i>R to and 1 LR ts, there exists a term t4 such
that to —g t4 and t5 —g t4. Ris terminating if there exists
no endless derivation t — t; — .... When the considered
rewrite system is confluent and terminating, every term ¢
has a unique normal form which we write t!g.

In the following definition we recall the notion of descen-
dant. This notion will be used in order to take into account
declared information leakage.

DEFINITION 5. Let A =t —y, 1 t' be a reduction step
of some term t into t' at position u with rule | — r. The set
of descendants (or residuals) of a position v by A, denoted
v\ A4, is

0 ifv=wu-p and
l|p is not a variable,
v\A=< {v} ifu L,
{u-p'-qlrly =2} ifv=u-p-qand
llp =z, and x variable.

The set of descendants of a position v by a reduction se-
quence B is defined by induction as follows

{v} if B is the null derivation,

U w\ B" if B= B'B", where B’ is
weN\ B’ the initial step of B.

v\ B =



(F,tell(R);a) — (FUR,a) (eawn)

(F,f:=t;a) — (F o (f — eval(F,t)),a) (ea.=)

(F,del(R);a) — (F'\ R,a) (eade) (F,skip;a) — (F,a) (€easkip;)
succ; p EP p (EQSUCC;) p1 +p2 EP b2 +pl (Eq+ com)
succ || p=p p (Edgyeq) p1lp2=pp2 ;1 (B4 com)
pr=pp2  (Fip2) — (F',ps) p3=ppa (P_)
<F7p1> - F’7p4> "
(F,a1;...;an;skip) —* (F' skip) eval(F,t;) = eval(F,t;) "
= Nti=t; Pyuor
(F,[g = a1;...;a]) — (F",succ) l:/\l (Pguard)
(F,q(t1, ... tn)y — (F",p") s
};17 RN F/’ / F, _ }7‘/7 /
o) = B ey Bop) LR opeq)5) (Po)

<F7p1 +p2> — <F/7pll>

(F,p1 op p2) — (F',p) op p2)

Figure 1: Inference Rules Defining the Operational Semantics

A position uniquely identifies a subterm of a term. The
notion of descendant for terms stems directly from the cor-
responding notion for positions.

3.2 Security Policy

We recall the basic notion of privacy levels. Formally, pri-
vacy levels are elements of a lattice £. We note C the order
defined on £ and make no difference between the lattice and
the set of its elements, i.e., £ denotes in the same time the
lattice and its carrier. We write respectively 1 and T the
bottom and the top element of £. If w1, and 72 are two ele-
ments of £ and 71 C 7o, we say that w2 is more private than
m1. We write U for the join operation (least upper bound)
and M for the meet operation (greatest lower bound).

In the following we suppose given such a finite lattice of
privacy levels £.

DEFINITION 6
is a terminating and confluent TRS defined over the signa-
ture XU £ such that

e SP introduces no junk into £. ILe., for all ground
terms, t, over YU L, tlsp is in L.

e SP introduces no confusion into £. lLe., Y1i,72 €
,277'1 #7'2 = T ?Zhsp T2

e functions in X are monotonic w.r.t. privacy levels
(i.e,N11,...,Tn ELVT, €L, T CT] =

Fr, e Ty, T)lsp C f(T1, 07, ooy To)lsP)

The no junk condition ensures that every data represented
as a (ground) term has a privacy level (€ £). The no con-
fusion property guaranties that different privacy levels will
never be equated by mistake. The third property is not
mandatory but rather a sensible one. It also simplifies some
definitions such as the notion of privacy level of a rule given
later on in the paper.

Consider the following example. Let ¥ = {f,g,h} be
a signature consisting of three function symbols with the
following respective arities 2, 2 and 1. Let £ = {1, T} and

(SECURITY POLICY). A security policy, SP,

1 C T. The following set of rules defines a security policy
SP:

fl@,y) =T g(x) —=
h(T,z) — L h(L,z)— L

Now g(f(T,L)) has T as normal form whereas g(h(T,T))
has L as normal form.

Usually the privacy level is supposed to increase through
computation in order to avoid information leakage. There-
fore the evaluation of a function using information of privacy
level 7 should yield a result with a privacy level greater than
or equal to m. However, this is no longer the case whenever
one has to deal with programs which downgrade or declassify
data. In the previous example of security policy SP, func-
tion h declassifies information. Indeed the rule h(T,z) — L
depends on T privacy level and gives a result of level 1. It
means that this security policy allows function h to declas-
sify the information given in its first argument.

Declassifying functions model the ways offered to a pro-
grammer to make interference between high level and low
level data. In some sense they can be seen as cryptographic
functions: the result of a encryption of data can be made
public.

One feature of our approach is that it can define subtle
security policies. For instance, there are several levels in the
power of cyphers, some are unbreakable (Vernam cipher)
whereas others offer less security (Caesar cipher). There
is also the case of algorithms depending on the size of the
used key: an RSA with a 100-digits key is more reliable
than an RSA with 50-digits key. It is possible to encode
such subtleties within adequate lattice and security policy.
Think for instance of a function RSA of arity 2, where the
first argument is the key and the second the message to
be cyphered. Now consider the following lattice of privacy
levels £ = {1, T, T1, Ks0, K100}-



T
Kso T1 Koo

NL/

The idea behind this definition is that Kso, K100 repre-
sents privacy levels dedicated to keys for encryption algo-
rithms whereas T, T1 and L are privacy level for data to be
encrypted. We could then give the following security policy:

RSA(Kloo,y) — J_
RSA(K50,J)) b Tl
RSA(Ti,z) =z
RSA(T,z) -z RSA(L,x)—=x

Notice that the three last rules are given in order to comply
with definition 6. These rules are not supposed to be used
in practice since RSA’s first argument, the encryption key,
has to be of privacy level either K50 or Kioo.

In other words, encryption with key Kigo downgrades
everything to public level (L), whereas encryption with a
less powerful key downgrades to a more private level (T1),
because the cypher is less powerful. The other rules are
given for the sake of completeness (security policy has to be
terminating for any argument and the result must be an el-
ement of £ see definition 6). In an actual setting they are of
no use since the first argument of an encryption algorithm
is meant to be a key, and thus must have a privacy level in
{Ks50, K100}. This must be checked in an actual system but
it is not meaningful here.

In the rest of this section we suppose given, although non
specified, a security policy SP.

DEFINITION 7  (PRIVACY LEVEL OF A TERM). Lett be a
term. The privacy level of t w.r.t. a security policy SP, writ-
ten 7(t) is the normal form o(t)!sp where the substitution
o instantiates every variable of t by L.

In our previous example the privacy level of f(g(h(z,y)), 2)
is thus the normal form of f(g(h(L, L)), L) whichis T. No-
tice that since SP defines monotonic functions (see defini-
tion 6), the privacy level of a term is the minimal privacy
level obtained for any ground instance of this term.

We extend the notion of privacy level to rewrite rules by
saying that the privacy level of a rule [ — r | ¢ is equal to
the privacy level of its left-hand side 7(I). We extend the
notion of privacy to conjunction of equations of the form
t1 =t2 by:

Tt = ta Ao At = tar) = |._, 7(t:)
We also extend these definitions to actions as follows:
m(skip) =T w(f:=1t)=n(f)
m(telll = 7| ¢)) =w(dell — 7| c)) =7(l)
(g = as..saa)) =[] _, w(a)

The intuitive explanation of those definitions is that the pri-
vacy level of an action is the greatest lower bound of its
components. That is, if an action as a privacy level 7 then,

at the worst, it can disclose information of this privacy level
(see definition 9 for further justifications of tell and del ac-
tions).

We now introduce the notion of declassified terms. As
we said earlier a function having a security policy assigning
a level less private than its argument may declassify infor-
mation. Indeed, in some ways it depends on private data
and gives a result of a more public status. Therefore, they
represent potential information flows. We identify terms
potentially declassified, i.e. terms which are made public
through the use of declassifying functions.

DEFINITION 8  (DECLASSIFIED TERM). Let
t = f(t1,...,tn) withn > 1 be a term. It is said to be
declassified if:

1. There is j € {1,...,n} such that w(t;) £ n(t), or
2. t is a subterm of a declassified term.

Consider the following term t = h(f(k), g(f(k))) together
with the following security policy

k— T flx) =T
g(z) = L h(z,y) =T

Terms t|; is not declassified, |3, tj2.1 and t|2.1.1 are declas-
sified. Notice that t;; and t2.; represent the same data but
have not the same status with respect to declassification.

3.3 Secure Processes

We now address the problem of secure process terms with
respect to a given security policy. We informally recall our
aim: we want to abstract from information flows declared in
the security policy, typically flows coming from declassified
terms, but want to prohibit other ones.

We start by the definition of a notion of well defined
rewrite rules. The idea is that there should be no infor-
mation leakage from left-hand side to right-hand side, and
thus the privacy level may only decrease through rewrite
rule applications. That is to say, the computation of the
normal form of a term with privacy level 7w uses only terms
the privacy levels of which are less than or equal to .

DEFINITION 9  (WELL DEFINED REWRITE RULES). A re-
write Tule | — 7 | ¢ is well defined whenever the following
conditions hold:

1. w(o(r)) En(o(l)) and w(o(c)) E w(o(l)) for all ground
substitutions o : Var(l) — £

2. 1 is a declassified term whenever r contains declassified
subterms.

Indeed, rules of the form SPY — PIN, given a security
policy such that SPY — 1, PIN — T is not acceptable
since it directly discloses the value of a private information.
The same remark can be done, altough more subtly, for rules
of the form SPY — true | PIN = true. Condition (2) is
not mandatory. It ensures that within a rewrite derivation
a descendant of a (sub-)term ¢ is declassified only if ¢ is it-
self declassified. This property allows us to give a simplified
definition of what we call declassified evaluation (cf. Defin-
ition 11).

In the following we only consider stores having well defined
rewrite rules.



We now introduce a notion of store equivalence up to some
privacy level 7. Informally two stores are equivalent up to
m if they agree on rules with privacy level no greater than
.

DEFINITION 10  (STORE EQUIVALENCE). Let Fy, F be t-
wo stores, and m € L£. We say that Fo and Fy are =-
equivalent Fy 2. Fy iff for all i € {0,1}, for all rules
pi = li > 1 | ¢i € R;: such that w(p;) C 7, there exists
a rule P1—i = li_i — 114 | Cl—; € lei; with Pi = P1—i, Up
to variable renaming.

The following definition is the key to handle formally de-
clared information leakage via a security policy (see Defini-
tions 13 and 14). In this definition, we propose to evaluate
declassified terms w.r.t. a specific store.

DEFINITION 11 (DECLASSIFIED EVALUATION). Let F, F’
be two stores. s_eval(F, F',t) is the normal form of t com-

puted using the rewrite relation e defined as follows:

t g wl—r|e t' such that

el — 1| ce F' If the position u is a descendant of a
declassified term,

e | —r|c€F, otherwise.

In other terms s_eval(F, F') is the evaluation process which
computes declassified parts (and their descendants) of a
term using rules in F’ and the other parts using rules in
F. If we make the assumption that both stores are conflu-
ent, the result is also confluent because of the condition on
well-defined rules stating that right hand sides may contain
declassified terms only if the left hand side is a declassified
term (see definition 9). This way all declassified subterms
are descendant of a declassified subterm already present in
the term to normalize.

We now define a declassified operational semantics based
on this declassified evaluation.

DEFINITION 12 (DECLASSIFIED OP. SEM.). Let F, F' be
two stores, and p a process term. We define the declassified

. . L. . F’ .
operational semantics as a transition relation —. Transi-

tions are of the form (F,p) il (F",p"). Rules are defined
as the ones of Fig. 1, except for rules (ea.=) and (Pguard)
where eval(F,t) is replaced by s_eval(F, F',t).

Now, we are almost ready to define a notion of secure
process term w.r.t. a security policy. For that, we introduce
a notion of secure process term up to some privacy level 7.
A process term will be said secure up to w if its behaviour,
limited to the effect done on data having a privacy level less
than or equal to m, does not depend on data with a privacy
level higher than 7.

DEFINITION 13 (SECURE PROCESS TERM UP TO 7). Let
p be a ground process term, ™ € £. p is secure up to privacy
m, and two m-equivalent stores Fi, F» if (Fi,p) — (F{,p’)
implies that:

e either 3F5 such that (F,p) A, (F3,p')y , F| =2, Fy
and p’ is secure up to privacy ™ and stores Fy, Fj.

e or (Fy»,p2) 7& and for all F*,p* such that (FY,p}) —*
(F* p%) we have F! =~ Fy.

Thus, a process term is secure up to level 7 if within
its runs data with privacy level higher than 7 do not in-
fluence data of a privacy status lower than 7 (stores stay
m-equivalent) except when this leakage is authorized by the
security policy. We have modeled the hypothesis done by
the security policy by evaluating declassified terms on a sin-
gle store. Note that the apparent distinction between I}
and F> (the definition is not symmetric) is not significant
since Definition 14 must hold for any appropriate equivalent
stores Fi, F5s.

We are now able to define what means to be safe with
respect to a given security policy. A process term is safe
whenever it is secure for all privacy levels of £.

DEFINITION 14  (SECURE GROUND PROCESS TERM). A
ground process term p of a component (F,IR) is secure w.r.t.
a security policy SP, iff for all m, all stores Fi1, Fy such that
F = F = F, pis secure up to privacy level w and stores
Fy, Fs.

We now give an example involving encrypted communica-
tions to illustrate these definitions.

EXAMPLE 2 (ENCRYPTED COMMUNICATION). Suppose
that we have two functions (with arity one for sake of sim-
plicity) crypt and decrypt for encryption/decryption. Let
us consider the following security policy: crypt(x) — L
and decrypt(z) — T which means that encrypted data are
considered as public (L) and decrypted data are secret (T ).
Then the communication of a secret through a public channel
between two processes may be written in the following way:

0 = |lew=1r=> pub := crypt(PIN) ; J o
I done := TT; cq := FF
[ B k := decrypt(pub); |
B <« |done=TT = done :— FF ; B

with the security policy : pub — 1,cq — L ,done — L and
PIN — T,k — T. Then, starting from a store where done
and co are two constants defined by the following rewrite
rules done — FF,cq — TT, the process term « || B8 com-
municates the secret PIN through a public channel pub by
means of an encryption function.

The point of this example is the following. Imagine that a
third process, say a spy, v runs in parallel with o, 3. Then
~ has access to pub and may use it to modify its low level
behavior. Therefore high level data may interfere with low
level behavior. For instance if v is defined as

v & [pub=1=y:=1]
[pub # 1=y :=2]

with y such that y — L in the security policy, then o || B |
v may formally exhibit information flows from high to low
level. Indeed for two L-equivalent stores the value of y may
differ, thus there are observable differencies from a 1 -level
point of view. It suffices for this to take two stores where the
value of encrypt(pin) is different.

Nevertheless, this should be acceptable in such a case since
data exchanged on pub is encrypted, and since the security



policy assigns L privacy level to encrypted terms. The reader
may check that « || B || v is a secure ground process term.

On the other hand, notice that, due to security policy, once
decrypted (here the result is stored in the high level constant
k) the status of data gets back to high level, hence cannot be
used inappropriately later.

4. SECURE PROCESS ANALYSIS

In section 4.1, we present an abstract interpretation on
which our analysis algorithm is based. The latter consists
in producing a set of inequations over privacy levels. This
algorithm is presented in section 4.2. In section 4.3 we show
how the satisfaction of inequations is related to our defini-
tion of secure process terms and focus on points induced by
security policies.

4.1 Abstract interpretation

We define an abstract operational semantics for a com-
ponent K, and security policy SP. The abstraction of a
store is a set of inequations over privacy levels, more pre-
cisely over terms of SP. The abstract operational semantics
defines new runs of abstract processes. These runs collect
inequations over SP terms. Since the number of these in-
equations is finite, it is possible to produce the whole set of
inequations for a process term. We prove in Theorem 1 that
if a security policy SP defined on K is such that all inequa-
tions hold, then the analyzed process term is secure in the
sense of definition 14. That is to say, no unwanted interfer-
ence happens. This is a kind of abstract interpretation, but
do not introduce all the machinery of [3].

We define privacy formule f by: fa=7|c|t|fMf|fUf
where ¢ denotes a constant and ¢ a term of SP. Privacy
inequations are statements of the form f; C fo.

DEFINITION 15. Let FF = (X,R) be a store, we define
FA = (24 RA), its abstract store, as a set of privacy in-
equations defined as follows: for all rules! — r | ¢ in R,
there are inequations r C l,c T [ in RA and R* contains
only those rules. S is the signature defining the same sym-
bols with the same arity than in 3 but is single sorted.

We now define a notion of compatibility between an ab-
stract store F* and a security policy.

DEFINITION 16. An abstract store F* is compatible with
a security policy SP iff all inequations in FA, say t C t/,
are valid in £. That is to say, for all ground substitution
5 VaT'(t) U VGT(t/) — £, S(t)!sp C S(t/)!gp.

We use an abstract execution to collect constraints that
ensure security of process terms. Informally, the abstract
operational semantics is defined by a transition system, the
states of which are triples <FA,pA,7'> consisting of an ab-
stract store F*, an abstract process term p™ and a privacy
formula 7, corresponding to the highest level checked in a
guard up to the current point in the execution. Abstract
transitions generate constraints, depending on 7 as well as
on the privacy level of terms manipulated, and record them
into the abstract store. Fig. 2 gives the rules defining the
abstract transition relation

Abstract execution of sequences of elementary actions is
described by the relation <. Abstract elementary actions
modify an abstract store F# with respect to a privacy level
7 of £. Since in a parallel composition p || ¢, p might check

guards of high level while g only works on low privacy levels,
we need to duplicate the privacy level 7, in order to not re-
ject such processes (as constraints generated by p can be too
strong compared to q). Hence, we introduce abstract oper-
ators +2, ||, ;Aand abstract process terms (or M-terms),
defined by the grammar: M ::= (p,7) | M|*M | M+*M |
M ;AM. In order to translate concrete to abstract opera-
tors, we define a transformation relation ——. It is clear
that —— is confluent and strongly normalizing. We write
M" the normal form of M w.r.t. —.

By inspection of the similarities of the inference rules in
Figs. 1 and 2 we can prove that to each concrete transition
step corresponds an abstract reduction step.

LEMMA 1. If (F,a;a) — (F’,a) then, for all T and con-
straint sets C, there exists C' O C such that

(FAUC, (aja, 7)) (F"UC, (a, 7))

Let ¢ be a function which associates to an abstract process
term M a corresponding concrete process term by omitting
all privacy levels (i.e., ¢((p,7)) = p, p(M|[* M) = (M) ||
(M), JM+AM) = $(M) + ¢(M’),

(M AM') = $(M) ; 6(M)).

LEMMA 2. Let K = (F,IR) and p a process term of K.
If (F,p) — (F',p') then for all M such that ¢(M) = p
and for all constraint sets C there exist M', C' such that
(FAUC, MMy —AFA U, M), (M) =p p' and C C
.

4.2 Process Term Analysis

The idea of our analysis is to collect the constraints com-
puted by all possible abstract executions of a ground process
term, say p. We claim that if the collected constraints are
all valid in £, then the process term, p, is secure for the con-
sidered security policy. Crucial for the termination of our
analysis is that the abstract store becomes stable during an
abstract execution, i.e., after a certain point no more new
privacy inequations are created.

DEFINITION 17. The analysis reduction ~~ is the relation
between triples of the form (F4, M, $), where § (denoting
the $istory of executed process calls) is a set of pairs of the
form (q, [w(t1);...;7(tn)]). ~ is defined as follows:

o if (FA4 M)y—A(FA M) using a reduction rule dif-
ferent from (APaps), then (F4, M, §) ~ (FY M, §)
and

o if M ={q(t1,...,tn), ) and
<FA7 <(Tj’riloéj ;pj)[wi/tiLT>>_)A<FA,7M/>; where the
process q 1s defined by (q(a:l, C ) & Ty ;pj) €

IR, then
(F4, (succ, 7), 9) if (q, [7(t1);
am(ta)]) €9
(FA M, §) ~
<FA/,M/,5§>U otherwise

(a, [(t1); .. s m(tn)])

Using the fact that the number of non equivalent abstract
process calls is finite (since U is idempotent and associa-
tive), we can prove that there are no infinite ~ reduction



(FA f:=t;a,T
(FAtell(l = r | ¢)ya, 7

~ ~ ~ ~—

—MFAU{tC fRU{r CflaT)
SUFAU{rCliu{cCl}U{r Ci},a,7)

—_— o~

Aeatel

. T —

(FA del(l — r | ¢);a, 7y (FAU{r C1},a,7) (Aeagel
<FA7Skip;a7T (_)A<FA7a7T> (AeaSkiP%
D1 =p D2
_Pi=eP2 AEq_
(p1, T)=Ap2, 7) (AP=,)
M [A M= Mo |4 My (AEqa)
My+AMo=A Mo+ My (AEq, 1)
(p1 op p2,7) — (p1,7) op™ (p2,7) op € {|l.;,+} (Aop™-I)
(succ, 1) ||* (suce, 72) — (succ, 71 L 72) (AI1E)
(succ, 1) ;M (p2, T2) > (2,71 U Ta) (AAE)
M=AMs (FA M)A My) M= My (AP_.)
(FA M) —A(FA7, Ma) =
(FA, (a1 ...;an;skip, 7U g))MA*<FA/, (skip, 7L g)) (AP )
(FA{lg = ai;...;an], 7)) —A(FA, (succ, 7 U g))
(a(@1,...,m0) < 70a;5p;) IR (FA (125 p))[ti /2], 7)) — (FY, M) (APaps)
(FAA(tr, - - tn), 7)) —A{FAT M)
(FA, M) —A(FA M4
: AP
FA MyopA M) —A(FAT MiopA M) ope {5, |} (AP,a)
A _).A At /
<F 7M1> <F 7M1> (AP+_A)

(FA, Mi+AMo)—A(FA, M)

Figure 2: Abstract Operational Semantics

sequences. Since, in addition, the number of rules one may
apply is always finite, we can define the result returned by
our analysis as the collection of all reachable abstract stores.
See [5] for the detailed proof of this claim.

DEFINITION 18 (PROCESS TERM SKELETON). Let K =
(F,IR) be a component and p be a process term of K. We
call skeleton of p, and write pi,, the constraint set Uiel FA
where the index set I contains elements i such that <FiA, succ, 7;)
is reachable from (F4,(p, L)) using ~~.

Informally, a process term skeleton pfv gathers a set of
constraints the validity of which guarantees the secure runs
of process p.

4.3 Adequacy

In this section we show that if the skeleton of a process
term is compatible with a security policy SP, then the con-
sidered process term is secure.

We start by a lemma stating that the security level of
actions executed by a process is related to the security level
of guards. If the skeleton of a process term is compatible
with a security policy then it implies that actions following a
guard of privacy level m operate on data with privacy levels
higher than or equal to 7.

LEMMA 3. Let K = (Fy,IR) be a component with Fo =
(X, Ro), p=po a ground process term of K, SP a security
policy for %, pt}o the skeleton of process term po s.t. pE.;O is
compatible with SP. Consider a transition sequence starting

from (Fo,po): (Fo,po) —= (Fi,p1) —% ... =% (Fy,pn)
where a1 = [¢" = a',...,a},], then w(g") C w(a;) for all

1> 0.

THEOREM 1. Let K = (F,IR) be a component, p a ground
process term of K, SP a security policy for F, piﬂ the skele-
ton of process term p. If pi'p is compatible with SP, then, p
i a secure process term.

Proof sketch

The proof is done by contradiction. Suppose that p is not
secure. The negation of definitions 13 and 14 imply that
there are privacy level 7, two m-equivalent stores FY, Fy such
that F" =, Fy =, 5 , a natural N and two derivations :

(FP,p°) — (Fi,p') — ... — (F{,p")
o oy Fi 11y Fi YN N
<F27p > _><F17p > — .. T <F2 s D >
such that p = po and for all j < N, Ff = FQJ and one of
the following points hold: (1) Either F{¥ ¢, F3' (2) or there
exists (F* pf) such that (F{¥, p") — (FNTL pNTLy —*
(F#,p™) but (K, p") #— and F3' %, F7.



A contradiction may be derived from both points. For the
first point it means that at some point j € {1;...;n} in the
execution path an action has two different effects on two -
equivalent stores FY, Fy. But from lemma 1 we can mimic
concrete reductions at the abstract level. At this point a
simple examination of all elementary action may conclude
that the satisfaction of inequations generated by the abstract
interpretation is impossible unless a declassifying function is
used. Therefore it depends on a value with a privacy level
higher than 7, thus such a value may be not equal on FY
and FJ. But in this subcase, and thanks to the definition

FJ
of —, two different results cannot be computed since they

are computed on a common store.

For the second point a contradiction may be derived from
lemma 3. if F# %_ F% then it means that an information
of a privacy level lower or equal to m has been modified
which is impossible since compatibility implies that the level
of actions is higher than 7 and thus must not influence 7-
equivalence between stores.

5. RELATED WORKS

Approaches based on conditional noninterference based
on a notion of downgrader channels, first presented in [13],
share similarities with our work. Intuitively, conditional
noninterference disallow high level to interfere with low level
unless the interference occurs through a dedicated down-
grading channel. Of course declassifying functions play the
role of downgrading channels in our system. Moreover, some
ideas developed in this way of research have their counter-
parts in our proposition. For instance the fact that the in-
terference relation is intransitive [23, 17] can be interpreted
in our setting by our definition of the privacy level of a term.
Indeed, this computation does not recursively inspects the
structure of a term. It was the case in [7] where the privacy
level of a term is computed as the highest privacy level of its
subterms. In our system it is no longer the case since a de-
classifying function may have an argument of privacy level
T but can still be of privacy level L. So the transitivity of
privacy levels on the term tree is broken. Concerning the
work of [24], our system extends its results in several direc-
tions. First our system may consider infinite computation
and second our security policies are more general -they may
be defined as complicate as any confluent and terminating
rewriting system-.

Nevertheless, our approach is more precise in the sense
that in these works, admissible interferences are allowed un-
til the last downgrading action. After there must be no
information flows. This paper clarifies our intentions pre-
sented in [6]. In our system some of such interferences are
allowed if they are initiated by a declassifying function. For
instance: SPY := £(PIN);z := SPY + 1 with £ a declas-
sifying function, illustrates well this idea. After the use of
declassifying function &, there may be interferences between
high and low levels indirectly coming from that use of £. In
our system such flows are allowed, since they are controlled
by declassifying functions, whereas there are no ways to deal
with them in the settings of [23, 17].

Our approach departs from several recent works related
to this paper [16, 33, 18] where the same problem is treated.
Robust declassification idea is that attackers may not be able
to control what information is released. It is not the same
approach as ours since we try to take into account situations

where the attacker may have such a control (e.g. brute force
attacks on password checking) but only using some identified
functions. Another difference comes from the fact that the
analysis of [18] is defined for simple imperative programs,
that is without concurrency while our analysis algorithm
can handle concurrency. [16] is closest to our work, it also
deals with declassification and how one can make exceptions
to the information flow. The underlying formalization is in-
transitive noninterference and they apply it to an imperative
programming-language with threads. In their formalism de-
classifications are declared to the level of actions, and it is
possible to restrict declassifications to certain parts of the
security lattice in the security policy. we differ from this ap-
proach in several ways. Firstly declassifications are defined
at the level of functions, thus providing security profiles more
elaborate than the definition of a downgrading from one to
another level. Secondly, using rewrite rules to express secu-
rity policies allows one to define more subtleties on security
policies. Indeed we can define how to compute the security
level of term relatively to the security levels of its subterms.
Consider for instance the security level of a list: it may be
defined as the join of the security level of its components.
These computations over security levels are not possible to
express even in polyvariant systems like the one of [21]. In-
deed to encode the security policy presented in section 3.2
for the RSA example, it is necessary to compute at the type
level. The recent work [15] compares to ours but does not
consider concurrent systems. It is also noticeable that our
framework copes with the modified strong security condition
of [16].

A different approach considers the quantity of interfer-
ences allowed. This work [20, 19] relies on the definition
of a distance, instead of being based on indistinguishability,
between two processes. It leads to a notion of approximate
confinement. Given a description of admissible spies, two
agents are approximately confined with respect to some set
of spies if there is a distance € such that for all spies the dis-
tance between the observable of the attacks of both agents
by a spy is smaller than e. We believe this approach is
complementary with our one which is more centered on the
quality of interferences allowed. A drawback of [20, 19] is the
limitation of the analysis to finite computations. Therefore
it is not easy to see how these ideas may be implemented
in our system where process calls may lead to infinite com-
putations. Nevertheless, in [20, 19] is proposed an abstract
semantics in order to have a realistic analysis (instead of an
exact collecting semantics) giving approximated results. It
may be of interest to investigate if, through this abstract
semantics, it is possible to adapt those results and combine
them with our notion of declared leakages through declassi-
fying functions.

Another interesting point of our proposition is the fact
that our notion of declassifying function may also be used
to analyze information flows from low to high level. Using
our system, it is possible to declare functions decipher(L) —
T. Therefore it is possible to force the result, through an
adapted security policy, of functions to be at least at some
security level. It allows the possibility to enforce a specific
security policy.

6. CONCLUSIONS

In this paper we have defined a notion of security policy



in terms of rewrite systems. It is possible to describe the
behavior of (in terms of privacy) functions and to declare
information leakages (declassifying functions). We have pro-
vided a formal definition of these declared interference. Our
proposition enriches traditional approaches on security based
on non-interference. With these declared interference it is
possible to take into account more real-life situations like
password verifications, communication of encrypted data
through a public channel etc. These situations, to our knowl-
edge, have not been addressed from a noninterference point
of view. Moreover the definition of a security policy as a
rewriting system. It provides a tool to define very subtle
security policies (for instance the privacy level of an encryp-
tion mechanism with respect to the status of the used key)
is a novelty. Also this formalization is able to take into
account the converse approach, for instance the result of de-
ciphering must be secret. It is representable in our system
by declaring deciphering functions as functions with secu-
rity policy decipher(l) — T. We also have presented an
analysis algorithm for this notion of declared interferences.

One key of our proposition is that, in some sense we
keep the track of the downgrading/upgrading of informa-
tion. That is after the use of a declassifying function, the
analysis continues, which is not the case in downgrading sys-
tems, e.g., [23, 17], where after the last use of a downgrading
channel there may be no interference between high and low
levels.

Future works include the study of the quantity of high
level information leaked to low level (in line with [20]), it
could also be declared in the security policy. An orthogonal
direction to investigate consists in making security policies
more flexible, more precisely it would be a closer study of
definition 6 (has the security policy to be terminating) and
definition 9 (in what circumstances the right hand side of
a rewriting may contain declassified subterms). Another
interesting direction to get closer to reality is to take into
account a greater precision on security policies. For instance
after three unsuccessful password try, the system may pro-
hibit a fourth try. It would imply a deeper use of rewriting
rules (real computations, not only rules on privacy levels) in
security policies.
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