Exact Linear Algebra Algorithmic: Theory and Practice ISSAC'15 Tutorial

Clément Pernet
Université Grenoble Alpes, Inria, LIP-AriC

July 6, 2015

Exact linear algebra

Matrices can be

Dense: store all coefficients
Sparse: store the non-zero coefficients only
Black-box: no access to the storage, only apply to a vector

Exact linear algebra

Matrices can be

Dense: store all coefficients
Sparse: store the non-zero coefficients only
Black-box: no access to the storage, only apply to a vector
Coefficient domains:
Word size: - integers with a priori bounds

- $\mathbb{Z} / p \mathbb{Z}$ for p of ≈ 32 bits

Multi-precision: $\mathbb{Z} / p \mathbb{Z}$ for p of $\approx 100,200,1000,2000, \ldots$ bits
Arbitrary precision: \mathbb{Z}, \mathbb{Q}
Polynomials: $\mathrm{K}[X]$ for K any of the above

Exact linear algebra

Matrices can be

Dense: store all coefficients
Sparse: store the non-zero coefficients only
Black-box: no access to the storage, only apply to a vector
Coefficient domains:
Word size: - integers with a priori bounds

- $\mathbb{Z} / p \mathbb{Z}$ for p of ≈ 32 bits

Multi-precision: $\mathbb{Z} / p \mathbb{Z}$ for p of $\approx 100,200,1000,2000, \ldots$ bits
Arbitrary precision: \mathbb{Z}, \mathbb{Q}
Polynomials: $\mathrm{K}[X]$ for K any of the above
Several implemenations for the same domain: better fits FFT, LinAlg, etc

Exact linear algebra

Matrices can be

Dense: store all coefficients
Sparse: store the non-zero coefficients only
Black-box: no access to the storage, only apply to a vector
Coefficient domains:
Word size: - integers with a priori bounds

- $\mathbb{Z} / p \mathbb{Z}$ for p of ≈ 32 bits

Multi-precision: $\mathbb{Z} / p \mathbb{Z}$ for p of $\approx 100,200,1000,2000, \ldots$ bits
Arbitrary precision: \mathbb{Z}, \mathbb{Q}
Polynomials: $\mathrm{K}[X]$ for K any of the above
Several implemenations for the same domain: better fits FFT, LinAlg, etc

Need to structure the design.

Exact linear algebra

Motivations

Comp. Number Theory:
Graph Theory:
Discrete log.:
Integer Factorization:
Algebraic Attacks: Echelon, LinSys, over $\mathbb{Z} / p \mathbb{Z}, p \approx 20$ bits, Sparse \& Dense List decoding of RS codes: Lattice reduction, over GF $(q)[X]$, Structured

CharPoly, LinSys, Echelon, over $\mathbb{Z}, \mathbb{Q}, \mathbb{Z} / p \mathbb{Z}$, Dense MatMul, CharPoly, Det, over \mathbb{Z}, Sparse LinSys, over $\mathbb{Z} / p \mathbb{Z}, p \approx 120$ bits, Sparse NullSpace, over $\mathbb{Z} / 2 \mathbb{Z}$, Sparse Algebraic Attacks: Ech
List decoding of RS codes:

Exact linear algebra

Motivations

Comp. Number Theory:
Graph Theory:
Discrete log.:
Integer Factorization: Algebraic Attacks: Echelon, LinSys, over $\mathbb{Z} / p \mathbb{Z}, p \approx 20$ bits, Sparse \& Dense List decoding of RS codes: Lattice reduction, over GF $(q)[X]$, Structured

CharPoly, LinSys, Echelon, over $\mathbb{Z}, \mathbb{Q}, \mathbb{Z} / p \mathbb{Z}$, Dense MatMul, CharPoly, Det, over \mathbb{Z}, Sparse LinSys, over $\mathbb{Z} / p \mathbb{Z}, p \approx 120$ bits, Sparse NullSpace, over $\mathbb{Z} / 2 \mathbb{Z}$, Sparse

Need for high performance.

Content

The scope of this presentation:

- not an exhaustive overview on linear algebra algorithmic and complexity improvements
- a few guidelines, for the use and design of exact linear algebra in practice
- bridging the theoretical algorihmic development and practical efficiency concerns

Outline

(1) Choosing the underlying arithmetic

- Using boolean arithmetic
- Using machine word arithmetic
- Larger field sizes
(2) Reductions and building blocks
- In dense linear algebra
- In blackbox linear algebra
(3) Size dimension trade-offs
- Hermite normal form
- Frobenius normal form
(4) Parallel exact linear algebra
- Ingredients for the parallelization
- Parallel dense linear algebra $\bmod p$

Outline

(1) Choosing the underlying arithmetic

- Using boolean arithmetic
- Using machine word arithmetic
- Larger field sizes
(2) Reductions and building blocks
- In dense linear algebra
- In blackbox linear algebra
(3) Size dimension trade-offs
- Hermite normal form
- Frobenius normal form
(4) Parallel exact linear algebra
- Ingredients for the parallelization
- Parallel dense linear algebra mod p

Achieving high practical efficiency

Most of linear algebra operations boil down to (a lot of)

$$
\mathrm{y} \leftarrow \mathrm{y} \pm \mathrm{a} * \mathrm{~b}
$$

- dot-product
- matrix-matrix multiplication
- rank 1 update in Gaussian elimination
- Schur complements, ...

Efficiency relies on

- fast arithmetic
- fast memory accesses

Here: focus on dense linear algebra

Which computer arithmetic?

Many base fields/rings to support

\mathbb{Z}_{2}
$\mathbb{Z}_{3,5,7}$
\mathbb{Z}_{p}
\mathbb{Z}, \mathbb{Q}
\mathbb{Z}_{p}

1 bit
2-3 bits
4-26 bits
>32 bits
>32 bits

Which computer arithmetic?

Many base fields/rings to support

\mathbb{Z}_{2}	1 bit
$\mathbb{Z}_{3,5,7}$	2 -3 bits
\mathbb{Z}_{p}	4-26 bits
\mathbb{Z}, \mathbb{Q}	>32 bits
\mathbb{Z}_{p}	>32 bits

Available CPU arithmetic

- boolean
- integer (fixed size)
- floating point
- .. and their vectorization

Which computer arithmetic?

Many base fields/rings to support

\mathbb{Z}_{2}	1 bit	\rightsquigarrow bit-packing
$\mathbb{Z}_{3,5,7}$	2-3 bits	\rightsquigarrow bit-slicing, bit-packing
\mathbb{Z}_{p}	4-26 bits	\rightsquigarrow CPU arithmetic
\mathbb{Z}, \mathbb{Q}	>32 bits	\rightsquigarrow multiprec. ints, big ints, CRT, lifting
\mathbb{Z}_{p}	>32 bits	\rightsquigarrow multiprec. ints, big ints, CRT

Available CPU arithmetic

- boolean
- integer (fixed size)
- floating point
- .. and their vectorization

Which computer arithmetic?

Many base fields/rings to support

\mathbb{Z}_{2}	1 bit	\rightsquigarrow bit-packing
$\mathbb{Z}_{3,5,7}$	2-3 bits	\rightsquigarrow bit-slicing, bit-packing
\mathbb{Z}_{p}	4-26 bits	\rightsquigarrow CPU arithmetic
\mathbb{Z}, \mathbb{Q}	>32 bits	\rightsquigarrow multiprec. ints, big ints, CRT, lifting
\mathbb{Z}_{p}	>32 bits	\rightsquigarrow multiprec. ints, big ints, CRT
$G \mathrm{GF}\left(p^{k}\right) \equiv \mathbb{Z}_{p}[X] /(Q)$		\rightsquigarrow Polynomial, Kronecker, Zech log, \ldots

Available CPU arithmetic

- boolean
- integer (fixed size)
- floating point
- .. and their vectorization

Dense linear algebra over \mathbb{Z}_{2} : bit-packing

uint64_t $\equiv\left(\mathbb{Z}_{2}\right)^{64} \rightsquigarrow$

- : bit-wise XOR, $(+\bmod 2)$ \& : bit-wise AND, (* mod 2)
dot-product (a, b)

```
uint64_t \(t=0\);
for (int \(k=0 ; k<N / 64 ; \quad++k\) )
    \(\mathrm{t}{ }^{\wedge}=\mathrm{a}[\mathrm{k}]\) \& \(\mathrm{b}[\mathrm{k}]\);
\(c=\) parity (t)
```

parity(x)

```
if (size(x) == 1)
        return x;
else return parity (High(x) ^ Low(x))
```

\rightsquigarrow Can be parallelized on 64 instances.

Tabulation:

- avoid computing parities
- balance computation vs communication
- (slight) complexity improvement possible

Tabulation:

- avoid computing parities
- balance computation vs communication
- (slight) complexity improvement possible

The Four Russian method [Arlazarov, Dinic, Kronrod, Faradzev 70]
(1) compute all 2^{k} linear combinations of k rows of B.
Gray code: each new line costs 1 vector add (vs $k / 2$)
(2) multiply chunks of length k of A by table look-up

	1	0	1	
	1	1	1	
	1	0	0	
	1	0	1	
	0	0	1	
	1	0	1	

Tabulation:

- avoid computing parities
- balance computation vs communication
- (slight) complexity improvement possible

The Four Russian method [Arlazarov, Dinic, Kronrod, Faradzev 70]
(1) compute all 2^{k} linear combinations of k rows of B.
Gray code: each new line costs 1 vector add (vs $k / 2$)
(2) multiply chunks of length k of A by table look-up

	1	0	1	
	1	1	1	
	1	0	0	
	1	0	1	
	0	0	1	
	1	0	1	

- For $k=\log n \rightsquigarrow O\left(n^{3} / \log n\right)$.
- In pratice: choice of k s.t. the table fits in L2 cache.

Dense linear algebra over \mathbb{Z}_{2}

The M4RI library [Albrecht Bard Hart 10]

- bit-packing
- Method of the Four Russians
- SIMD vectorization of boolean instructions (128 bits registers)
- Cache optimization
- Strassen's $O\left(n^{2.81}\right)$ algorithm

n	7000	14000	28000
SIMD bool arithmetic	2.109 s	15.383 s	111.82
SIMD + 4 Russians	0.256 s	2.829 s	29.28 s
SIMD + 4 Russians + Strassen	0.257 s	2.001 s	15.73

Table : Matrix product $n \times n$ by $n \times n$, on an i5 SandyBridge 2.6 Ghz .

Dense linear algebra over $\mathbb{Z}_{3}, \mathbb{Z}_{5}$ [Boothby \& Bradshaw 09]

$$
\mathbb{Z}_{3}=\{0,1,-1\}=\{00,01,10\}
$$

Dense linear algebra over $\mathbb{Z}_{3}, \mathbb{Z}_{5}$ [Boothby \& Bradshaw 09]

$$
\mathbb{Z}_{3}=\{0,1,-1\} \quad=\{00,01,10\} \rightsquigarrow \text { add/sub in } 7 \text { bool ops }
$$

Dense linear algebra over $\mathbb{Z}_{3}, \mathbb{Z}_{5}$ [Boothby \& Bradshaw 09]

$$
\begin{aligned}
\mathbb{Z}_{3}=\{0,1,-1\} & =\{00,01,10\} \\
& \rightsquigarrow \text { add } / \text { sub in } 7 \text { bool ops } \\
& =\{00,10,11\} \quad \rightsquigarrow \text { add } / \text { sub in } 6 \text { bool ops }
\end{aligned}
$$

Dense linear algebra over $\mathbb{Z}_{3}, \mathbb{Z}_{5}$ [Boothby \& Bradshaw 09]

$$
\begin{array}{rlrl}
\mathbb{Z}_{3}=\{0,1,-1\} & =\{00,01,10\} & \rightsquigarrow \text { add } / \text { sub in } 7 \text { bool ops } \\
& =\{00,10,11\} \quad \rightsquigarrow \text { add/sub in } 6 \text { bool ops }
\end{array}
$$

Bit-slicing

$$
(-1,0,1,0,1,-1,-1,0) \in \mathbb{Z}_{3}^{8} \rightarrow(11,00,10,00,10,11,00)
$$

Stored as 2 words
$(1,0,1,0,1,1,0)$
$(1,0,0,0,0,1,0)$

Dense linear algebra over $\mathbb{Z}_{3}, \mathbb{Z}_{5}$ [Boothby \& Bradshaw 09]

$$
\begin{array}{rlrl}
\mathbb{Z}_{3}=\{0,1,-1\} & =\{00,01,10\} & \rightsquigarrow \text { add } / \text { sub in } 7 \text { bool ops } \\
& =\{00,10,11\} \quad \rightsquigarrow \text { add/sub in } 6 \text { bool ops }
\end{array}
$$

Bit-slicing

$$
(-1,0,1,0,1,-1,-1,0) \in \mathbb{Z}_{3}^{8} \rightarrow(11,00,10,00,10,11,00)
$$

Stored as 2 words $(1,0,1,0,1,1,0)$
$(1,0,0,0,0,1,0)$
$\rightsquigarrow \vec{y} \leftarrow \vec{y}+x \vec{b}$ for $x \in \mathbb{Z}_{3}, \vec{y}, \vec{b} \in \mathbb{Z}_{3}^{64}$ in 6 boolean word ops.

Dense linear algebra over $\mathbb{Z}_{3}, \mathbb{Z}_{5}$ [Boothby \& Bradshaw 09]

$$
\begin{aligned}
\mathbb{Z}_{3}=\{0,1,-1\} & =\{00,01,10\}
\end{aligned} \begin{aligned}
& \rightsquigarrow \text { add/sub in } 7 \text { bool ops } \\
&=\{00,10,11\}
\end{aligned} \rightsquigarrow \text { add/sub in } 6 \text { bool ops }
$$

Bit-slicing

$$
(-1,0,1,0,1,-1,-1,0) \in \mathbb{Z}_{3}^{8} \rightarrow(11,00,10,00,10,11,00)
$$

Stored as 2 words

$$
(1,0,1,0,1,1,0)
$$

$$
(1,0,0,0,0,1,0)
$$

$\rightsquigarrow \vec{y} \leftarrow \vec{y}+x \vec{b}$ for $x \in \mathbb{Z}_{3}, \vec{y}, \vec{b} \in \mathbb{Z}_{3}^{64}$ in 6 boolean word ops.

Recipe for \mathbb{Z}_{5}

- Use redundant representations on 3 bits + bit-slicing
- integer add + bool operations
- Pseudo-reduction mod 5 ($4 \rightarrow 3$ bits) in 8 bool ops found by computer assisted search.

Dense linear algebra over \mathbb{Z}_{p} for word-size p

Delayed modular reductions
(1) Compute using integer arithmetic
(2) Reduce modulo p only when necessary

Dense linear algebra over \mathbb{Z}_{p} for word-size p

Delayed modular reductions

(1) Compute using integer arithmetic
(2) Reduce modulo p only when necessary

When to reduce ?

Bound the values of all intermediate computations.

- A priori:

Representation of \mathbb{Z}_{p}
Scalar product, Classic MatMul

$$
\{0 \ldots p-1\} \quad\left\{-\frac{p-1}{2} \ldots \frac{p-1}{2}\right\}
$$

$$
n(p-1)^{2} \quad n\left(\frac{p-1}{2}\right)^{2}
$$

Dense linear algebra over \mathbb{Z}_{p} for word-size p

Delayed modular reductions

(1) Compute using integer arithmetic
(2) Reduce modulo p only when necessary

When to reduce?

Bound the values of all intermediate computations.

- A priori:

Representation of \mathbb{Z}_{p}

$$
\begin{array}{rr}
\{0 \ldots p-1\} & \left\{-\frac{p-1}{2} \ldots \frac{p-1}{2}\right\} \\
\hline n(p-1)^{2} & n\left(\frac{p-1}{2}\right)^{2} \\
\left(\frac{1+3^{\ell}}{2}\right)^{2}\left\lfloor\frac{n}{2^{\ell}}\right\rfloor(p-1)^{2} & 9^{\ell}\left\lfloor\frac{n}{2^{\ell}}\right\rfloor\left(\frac{p-1}{2}\right)^{2}
\end{array}
$$

Scalar product, Classic MatMul Strassen-Winograd MatMul (ℓ rec. levels)

Dense linear algebra over \mathbb{Z}_{p} for word-size p

Delayed modular reductions

(1) Compute using integer arithmetic
(2 Reduce modulo p only when necessary

When to reduce?

Bound the values of all intermediate computations.

- A priori:

$$
\text { Representation of } \mathbb{Z}_{p}
$$

$$
\{0 \ldots p-1\} \quad\left\{-\frac{p-1}{2} \ldots \frac{p-1}{2}\right\}
$$

Scalar product, Classic MatMul

$n(p-1)^{2}$	$n\left(\frac{p-1}{2}\right)^{2}$
$\left(\frac{1+3^{\ell}}{2}\right)^{2}\left\lfloor\frac{n}{2^{\ell}}\right\rfloor(p-1)^{2}$	$9^{\ell}\left\lfloor\frac{n}{2^{\ell}}\right\rfloor\left(\frac{p-1}{2}\right)^{2}$

- Maintain locally a bounding interval on all matrices computed

Computing over fixed size integers

How to compute with (machine word size) integers efficiently?
(1) use CPU's integer arithmetic units

$$
\mathrm{y}+=\mathrm{a} * \mathrm{~b}: \text { correct if }|a b+y|<2^{63} \rightsquigarrow|a|,|b|<2^{31}
$$

Computing over fixed size integers

How to compute with (machine word size) integers efficiently?
(1) use CPU's integer arithmetic units

```
\(\mathrm{y}+=\mathrm{a} * \mathrm{~b}\) : correct if \(|a b+y|<2^{63} \rightsquigarrow|a|,|b|<2^{31}\)
movq (\%rax, \%rdx, 8), \%rax
    imulq \(-56(\% \mathrm{rbp}), \%\) rax
    addq \%rax, \%rcx
    movq \(-80(\% \mathrm{rbp}), \% \mathrm{rax}\)
```


Computing over fixed size integers

How to compute with (machine word size) integers efficiently?
(1) use CPU's integer arithmetic units + vectorization

```
y += a * b: correct if }|ab+y|<\mp@subsup{2}{}{63}\rightsquigarrow||a|,|b|<\mp@subsup{2}{}{31
movq (%rax,%rdx,8),%rax
    imulq -56(%rbp), %rax
    addq %rax, %rcx
    movq -80(%rbp), %rax
\begin{tabular}{ll} 
vpmuludq & \(\% x m m 3, \% x m m 0, \% x m m 0\) \\
vpaddq & \(\% x m m 2, \% x m m 0, \% x m m 0\) \\
vpsllq & \(\$ 32, \% x m m 0, \% x m m 0\)
\end{tabular}
```


Computing over fixed size integers

How to compute with (machine word size) integers efficiently?
(1) use CPU's integer arithmetic units + vectorization

$$
\begin{array}{llll}
\mathrm{y}+=\mathrm{a} * \mathrm{~b}: \text { correct if }|a b+y|<2^{63} \rightsquigarrow|a|,|b|<2^{31} \\
\text { movq } & (\% \mathrm{rax}, \% \mathrm{rdx}, 8), \% \mathrm{rax} & & \\
\text { imulq } & -56(\% \mathrm{rbp}), \% \text { rax } & \text { vpmuludq } & \% \mathrm{xmm3} 3, \% \mathrm{xmm0}, \% \mathrm{xmm0} \\
\text { addq } & \% \mathrm{rax}, \% \mathrm{rcx} & \text { vpaddq } & \% \mathrm{xmm2}, \% \mathrm{xmm0} \% \mathrm{xmm0} \\
\text { movq } & -80(\% \mathrm{rbp}), \% \text { rax } & \text { vpsllq } & \$ 32, \% \mathrm{xmm0}, \% \mathrm{xmm0}
\end{array}
$$

(2) use CPU's floating point units

$$
\mathrm{y}+=\mathrm{a} * \mathrm{~b}: \text { correct if }|a b+y|<2^{53} \rightsquigarrow|a|,|b|<2^{26}
$$

Computing over fixed size integers

How to compute with (machine word size) integers efficiently?
(1) use CPU's integer arithmetic units + vectorization

$$
\begin{array}{llll}
\mathrm{y}+=\mathrm{a} * \mathrm{~b}: \text { correct if }|a b+y|<2^{63} \rightsquigarrow|a|,|b|<2^{31} \\
\text { movq } & (\% \mathrm{rax}, \% \mathrm{rdx}, 8), \% \mathrm{rax} & & \\
\text { imulq } & -56(\% \mathrm{rbp}), \% \text { rax } & \text { vpmuludq } & \% \mathrm{xmm3}, \% \mathrm{xmm0}, \% \mathrm{xmm0} \\
\text { addq } & \% \mathrm{rax}, \% \mathrm{rcx} & \text { vpaddq } & \% \text { xmm2, } \% x m m 0, \% x m m 0 \\
\text { movq } & -80(\% \mathrm{rbp}), \% \text { rax } & \text { vpsllq } & \$ 32, \% x m m 0, \% x m m 0
\end{array}
$$

(2) use CPU's floating point units

```
    y += a * b: correct if }|ab+y|<\mp@subsup{2}{}{53}\rightsquigarrow|a|,|b|<\mp@subsup{2}{}{26
    movsd (%rax,%rdx,8), %xmm0
    mulsd -56(%rbp), %xmm0
    addsd %xmm0, %xmm1
    movq %xmm1, %rax
```


Computing over fixed size integers

How to compute with (machine word size) integers efficiently?
(1) use CPU's integer arithmetic units + vectorization

$$
\begin{array}{llll}
\mathrm{y}+=\mathrm{a} * \mathrm{~b}: \text { correct if }|a b+y|<2^{63} \leadsto|a|,|b|<2^{31} \\
\text { movq } & (\% \mathrm{rax}, \% \mathrm{rdx}, 8), \% \mathrm{rax} & & \\
\text { imulq } & -56(\% \mathrm{rbp}), \% \text { rax } & \text { vpmuludq } & \% \mathrm{xmm3}, \% \mathrm{xmm0}, \% \mathrm{xmm0} \\
\text { addq } & \% \mathrm{rax}, \% \mathrm{rcx} & \text { vpaddq } & \% \mathrm{xmm2,} \mathrm{\% xmm0,} \mathrm{\% xmm0} \\
\text { movq } & -80(\% \mathrm{rbp}), \% \mathrm{rax} & \text { vpsllq } & \$ 32, \% \mathrm{xmm0}, \% \mathrm{xmm0}
\end{array}
$$

(2) use CPU's floating point units + vectorization

```
    y += a * b: correct if }|ab+y|<\mp@subsup{2}{}{53}\rightsquigarrow |a|,|b|<\mp@subsup{2}{}{26
    movsd (%rax,%rdx,8), %xmm0 vinsertf128 $0x1, 16(%rcx,%rax),%ymm0
    mulsd -56(%rbp), %xmm0
    addsd %xmm0, %xmm1
    movq %xmm1, %rax
```

vmovapd
\%ymm1, \%ymm0, \%ymm0
(\%rsi, \%rax), \%ymm0, \%ymm0
\%ymm0, (\%rsi,\%rax)

Exploiting in-core parallelism

Ingredients

SIMD: Single Instruction Multiple Data:
1 arith. unit acting on a vector of data

MMX	64 bits
SSE	128 bits
AVX	256 bits
AVX-512	512 bits

Exploiting in-core parallelism

Ingredients

SIMD: Single Instruction Multiple Data:
1 arith. unit acting on a vector of data
64 bits

SSE	128 bits
SSX	256 bits
AVX-512	512 bits

Pipeline: amortize the latency of an operation when used repeatedly throughput of $1 \mathrm{op} /$ Cycle for all arithmetic ops considered here

Exploiting in-core parallelism

Ingredients

SIMD: Single Instruction Multiple Data:
1 arith. unit acting on a vector of data

MMX	64 bits
SSE	128 bits
AVX	256 bits
AVX-512	512 bits

Pipeline: amortize the latency of an operation when used repeatedly throughput of $1 \mathrm{op} /$ Cycle for all arithmetic ops considered here

Execution Unit parallelism: multiple arith. units acting simulatneously on distinct registers

SIMD and vectorization

Intel Sandybridge micro-architecture

Performs at every clock cycle:

- 1 Floating Pt. Mul $\times 4$
- 1 Floating Pt. Add $\times 4$

Or:

- 1 Integer Mul
$\times 2$
-2 Integer Add $\times 2$

SIMD and vectorization

Intel Haswell micro-architecture

Performs at every clock cycle:

- 2 Floating Pt. Mul \& Add $\times 4$ Or:
- 1 Integer Mul $\times 4$
- 2 Integer Add $\times 4$

FMA: Fused Multiplying \& Accumulate, c += a * b

SIMD and vectorization

AMD Bulldozer micro-architecture

Performs at every clock cycle:

- 2 Floating Pt. Mul \& Add $\times 2$ Or:
- 1 Integer Mul $\times 2$
- 2 Integer Add
$\times 2$

FMA: Fused Multiplying \& Accumulate, c += $\mathrm{a} * \mathrm{~b}$

SIMD and vectorization

Intel Nehalem micro-architecture
Port 0

Performs at every clock cycle:

- 1 Floating Pt. Mul $\times 2$
- 1 Floating Pt. Add $\times 2$

Or:

- 1 Integer Mul
- 2 Integer Add $\times 2$

Summary: 64 bits AXPY throughput

					$\sum_{\underset{N}{\pi}}^{\sum_{N}^{\pi}}$	\# daxpy /Cycle			
Intel Haswell	INT	256	2	1		4	3.5	28	
AVX2	FP	256			2	8	3.5	56	
Intel Sandybridge AVX1	$\begin{gathered} \hline \text { INT } \\ \text { FP } \end{gathered}$								
AMD Bulldozer FMA4	$\begin{array}{r} \hline \text { INT } \\ \text { FP } \end{array}$								
Intel Nehalem SSE4	$\begin{array}{r} \hline \text { INT } \\ \text { FP } \end{array}$								
AMD K10 SSE4a	$\begin{array}{r} \hline \text { INT } \\ \text { FP } \end{array}$								

Speed of light: CPU freq $\times(\#$ daxpy $/$ Cycle $) \times 2$

Summary: 64 bits AXPY throughput

			$\begin{aligned} & \frac{n}{\stackrel{0}{0}} \\ & \frac{0}{0} \\ & \text { * } \end{aligned}$		$\sum_{\underset{\sim}{\pi}}^{\mathbb{K}}$	\# daxpy /Cycle			
Intel Haswell	INT	256	2	1		4	3.5	28	23.3
AVX2	FP	256			2	8	3.5	56	49.2
Intel Sandybridge AVX1	$\begin{array}{r} \hline \text { INT } \\ \text { FP } \end{array}$								
AMD Bulldozer FMA4	$\begin{gathered} \text { INT } \\ \text { FP } \end{gathered}$								
Intel Nehalem SSE4	$\begin{array}{r} \text { INT } \\ \text { FP } \end{array}$								
$\begin{gathered} \text { AMD K10 } \\ \text { SSE4a } \end{gathered}$	$\begin{array}{r} \hline \text { INT } \\ \text { FP } \end{array}$								

Speed of light: CPU freq $\times(\#$ daxpy $/$ Cycle $) \times 2$

Summary: 64 bits AXPY throughput

					$\sum_{\langle }^{\mathbb{L}}$	\# daxpy /Cycle			
Intel Haswell	INT	256	2	1		4	3.5	28	23.3
AVX2	FP	256			2	8	3.5	56	49.2
Intel Sandybridge	INT	128	2	1		2	3.3	13.2	
AVX1	FP	256	1	1		4	3.3	26.4	
AMD Bulldozer FMA4	$\begin{array}{r} \hline \text { INT } \\ \text { FP } \end{array}$								
Intel Nehalem SSE4	$\begin{array}{r} \text { INT } \\ \text { FP } \end{array}$								
$\begin{gathered} \text { AMD K10 } \\ \text { SSE4a } \end{gathered}$	$\begin{gathered} \hline \text { INT } \\ \text { FP } \end{gathered}$								

Speed of light: CPU freq $\times(\#$ daxpy $/$ Cycle $) \times 2$

Summary: 64 bits AXPY throughput

					$\underset{\psi}{\sum_{\psi}^{\pi}}$	\# daxpy /Cycle			
Intel Haswell	INT	256	2	1		4	3.5	28	23.3
AVX2	FP	256			2	8	3.5	56	49.2
Intel Sandybridge	INT	128	2	1		2	3.3	13.2	12.1
AVX1	FP	256	1	1		4	3.3	26.4	24.6
AMD Bulldozer FMA4	$\begin{array}{r} \hline \text { INT } \\ \text { FP } \end{array}$								
Intel Nehalem SSE4	$\begin{array}{r} \text { INT } \\ \text { FP } \end{array}$								
$\begin{gathered} \text { AMD K10 } \\ \text { SSE4a } \end{gathered}$	$\begin{gathered} \hline \text { INT } \\ \text { FP } \end{gathered}$								

Speed of light: CPU freq $\times(\#$ daxpy $/$ Cycle $) \times 2$

Summary: 64 bits AXPY throughput

					$\underset{\psi}{\sum_{\psi}^{\pi}}$	\# daxpy /Cycle			
Intel Haswell	INT	256	2	1		4	3.5	28	23.3
AVX2	FP	256			2	8	3.5	56	49.2
Intel Sandybridge	INT	128	2	1		2	3.3	13.2	12.1
AVX1	FP	256	1	1		4	3.3	26.4	24.6
AMD Bulldozer	INT	128	2	1		2	2.1	8.4	
FMA4	FP	128			2	4	2.1	16.8	
Intel Nehalem SSE4	$\begin{array}{r} \text { INT } \\ \text { FP } \end{array}$								
$\begin{gathered} \text { AMD K10 } \\ \text { SSE4a } \end{gathered}$	$\begin{gathered} \hline \text { INT } \\ \text { FP } \end{gathered}$								

Speed of light: CPU freq $\times(\#$ daxpy $/$ Cycle $) \times 2$

Summary: 64 bits AXPY throughput

					$\underset{\underset{M}{*}}{\stackrel{\pi}{\Sigma}}$	\# daxpy /Cycle	$\begin{aligned} & \underset{N}{N} \\ & \underset{U}{\dot{U}} \\ & \stackrel{\dot{U}}{\dot{U}} \\ & \underset{U}{U} \end{aligned}$		
Intel Haswell AVX2	INT	256	2	1		4	3.5	28	23.3
	FP	256			2	8	3.5	56	49.2
Intel Sandybridge AVX1	INT	128	2	1		2	3.3	13.2	12.1
	FP	256	1	1		4	3.3	26.4	24.6
AMD Bulldozer FMA4	INT	128	2	1		2	2.1	8.4	6.44
	FP	128			2	4	2.1	16.8	13.1
Intel Nehalem SSE4	$\begin{array}{r} \text { INT } \\ \text { FP } \end{array}$								
AMD K10 SSE4a	$\begin{gathered} \text { INT } \\ \text { FP } \end{gathered}$								

Speed of light: CPU freq $\times(\#$ daxpy $/$ Cycle $) \times 2$

Summary: 64 bits AXPY throughput

					$\underset{\underset{M}{*}}{\stackrel{\pi}{\Sigma}}$		$\begin{aligned} & \underset{N}{N} \\ & \underset{U}{\dot{U}} \\ & \stackrel{\dot{U}}{\dot{U}} \\ & \underset{U}{U} \end{aligned}$		
Intel Haswell AVX2	INT	256	2	1		4	3.5	28	23.3
	FP	256			2	8	3.5	56	49.2
Intel Sandybridge AVX1	INT	128	2	1		2	3.3	13.2	12.1
	FP	256	1	1		4	3.3	26.4	24.6
AMD Bulldozer FMA4	INT	128	2	1		2	2.1	8.4	6.44
	FP	128			2	4	2.1	16.8	13.1
Intel Nehalem SSE4	INT	128	2	1		2	2.66	10.6	
	FP	128	1	1		2	2.66	10.6	
$\begin{gathered} \text { AMD K10 } \\ \text { SSE4a } \end{gathered}$	$\begin{gathered} \text { INT } \\ \text { FP } \end{gathered}$								

Speed of light: CPU freq $\times(\#$ daxpy $/$ Cycle $) \times 2$

Summary: 64 bits AXPY throughput

					$\sum_{\underset{\sim}{\alpha}}^{\sum_{N}^{\pi}}$	\# daxpy /Cycle	CPU Freq. (Ghz)		
Intel Haswell AVX2	INT	256	2	1		4	3.5	28	23.3
	FP	256			2	8	3.5	56	49.2
Intel Sandybridge AVX1	INT	128	2	1		2	3.3	13.2	12.1
	FP	256	1	1		4	3.3	26.4	24.6
AMD Bulldozer FMA4	INT	128	2	1		2	2.1	8.4	6.44
	FP	128			2	4	2.1	16.8	13.1
Intel Nehalem SSE4	INT	128	2	1		2	2.66	10.6	4.47
	FP	128	1	1		2	2.66	10.6	9.6
$\begin{gathered} \text { AMD K10 } \\ \text { SSE4a } \end{gathered}$	$\begin{array}{r} \hline \text { INT } \\ \text { FP } \end{array}$								

Speed of light: CPU freq $\times(\#$ daxpy $/$ Cycle $) \times 2$

Summary: 64 bits AXPY throughput

		$\begin{gathered} \stackrel{N}{\omega} \\ \stackrel{N}{\#} \\ \stackrel{N}{\omega 0} \\ \stackrel{N}{\infty} \end{gathered}$		\# Multipliers	${\underset{H}{\Sigma}}_{\Sigma}^{\Sigma}$	\# daxpy /Cycle	CPU Freq. (Ghz)		
Intel Haswell	INT	256	2	1		4	3.5	28	23.3
AVX2	FP	256			2	8	3.5	56	49.2
Intel Sandybridge	INT	128	2	1		2	3.3	13.2	12.1
AVX1	FP	256	1	1		4	3.3	26.4	24.6
AMD Bulldozer	INT	128	2	1		2	2.1	8.4	6.44
FMA4	FP	128			2	4	2.1	16.8	13.1
Intel Nehalem	INT	128	2	1		2	2.66	10.6	4.47
SSE4	FP	128	1	1		2	2.66	10.6	9.6
AMD K10	INT	64	2	1		1	2.4	4.8	
SSE4a	FP	128	1	1		2	2.4	9.6	

Speed of light: CPU freq $\times(\#$ daxpy $/$ Cycle $) \times 2$

Summary: 64 bits AXPY throughput

					$\underset{\underset{\sim}{*}}{\stackrel{\pi}{\Sigma}}$	\# daxpy /Cycle	$\begin{aligned} & \overparen{N} \\ & \underset{U}{U} \\ & \dot{ष} \\ & \stackrel{U}{U} \\ & \underset{U}{U} \end{aligned}$		
Intel Haswell AVX2	INT	256	2	1		4	3.5	28	23.3
	FP	256			2	8	3.5	56	49.2
Intel Sandybridge AVX1	INT	128	2	1		2	3.3	13.2	12.1
	FP	256	1	1		4	3.3	26.4	24.6
AMD Bulldozer FMA4	INT	128	2	1		2	2.1	8.4	6.44
	FP	128			2	4	2.1	16.8	13.1
Intel Nehalem SSE4	INT	128	2	1		2	2.66	10.6	4.47
	FP	128	1	1		2	2.66	10.6	9.6
$\begin{gathered} \text { AMD K10 } \\ \text { SSE4a } \end{gathered}$	INT	64	2	1		1	2.4	4.8	
	FP	128	1	1		2	2.4	9.6	8.93

Speed of light: CPU freq $\times(\#$ daxpy $/$ Cycle $) \times 2$

Computing over fixed size integers: ressources

Micro-architecture bible: Agner Fog's software optimization resources [www.agner.org/optimize]

Experiments:
dgemm (double): OpenBLAS [http://www.openblas.net/]
igemm (int64_t): Eigen [http://eigen.tuxfamily.org/] \&
FFLAS-FFPACK [linalg.org/projects/fflas-ffpack]

Integer Packing

32 bits: half the precision twice the speed

Gfops	double	float	int64_t	int32_t
Intel SandyBridge	24.7	49.1	12.1	24.7
Intel Haswell	49.2	77.6	23.3	27.4
AMD Bulldozer	13.0	20.7	6.63	11.8

Computing over fixed size integers

SandyBridge i5-3320M@3.3Ghz. $n=2000$.
Take home message

- Floating pt. arith. delivers the highest speed (except in corner cases)
- 32 bits twice as fast as 64 bits

Computing over fixed size integers

SandyBridge i5-3320M@3.3Ghz. $n=2000$.
Take home message

- Floating pt. arith. delivers the highest speed (except in corner cases)
- 32 bits twice as fast as 64 bits
- best bit computation throughput for double precision floating points.

Larger finite fields: $\log _{2} p \geq 32$

As before:
(1) Use adequate integer arithmetic
(2) reduce modulo p only when necessary

Which integer arithmetic?

(1) big integers (GMP)
(2) fixed size multiprecision (Givaro-RecInt)
(3) Residue Number Systems (Chinese Remainder theorem)
\rightsquigarrow using moduli delivering optimum bitspeed

Larger finite fields: $\log _{2} p \geq 32$

As before:
(1) Use adequate integer arithmetic
(2) reduce modulo p only when necessary

Which integer arithmetic?

(1) big integers (GMP)
(2) fixed size multiprecision (Givaro-RecInt)
(3) Residue Number Systems (Chinese Remainder theorem)
\rightsquigarrow using moduli delivering optimum bitspeed

$\log _{2} p$	50	100	150
GMP	58.1 s	94.6 s	140 s

In practice

In practice

In practice

Outline

(1) Choosing the underlying arithmetic

- Using boolean arithmetic
- Using machine word arithmetic
- Larger field sizes
(2) Reductions and building blocks
- In dense linear algebra
- In blackbox linear algebra
(3) Size dimension trade-offs
- Hermite normal form
- Frobenius normal form
(4) Parallel exact linear algebra
- Ingredients for the parallelization
- Parallel dense linear algebra $\bmod p$

Reductions to building blocks

Huge number of algorithmic variants for a given computation in $O\left(n^{3}\right)$. Need to structure the design of set of routines :

- Focus tuning effort on a single routine
- Some operations deliver better efficiency:
\triangleright in practice: memory access pattern
\triangleright in theory: better algorithms

Memory access pattern

- The memory wall: communication speed improves slower than arithmetic

Memory access pattern

- The memory wall: communication speed improves slower than arithmetic
- Deep memory hierarchy

Memory access pattern

- The memory wall: communication speed improves slower than arithmetic
- Deep memory hierarchy
\rightsquigarrow Need to overlap communications by computation

Design of BLAS 3 [Dongarra \& AI. 87]

- Group all ops in Matrix products gemm: Work $O\left(n^{3}\right) \gg$ Data $O\left(n^{2}\right)$

MatMul has become a building block in practice

Sub-cubic linear algebra

$<$ 1969: $O\left(n^{3}\right)$ for everyone (Gauss, Householder, Danilevskiii, etc)

Sub-cubic linear algebra

< 1969: $O\left(n^{3}\right)$ for everyone (Gauss, Householder, Danilevsǩii, etc)

Matrix Multiplication $\rightsquigarrow O\left(n^{\omega}\right)$
[Strassen 69]:
$O\left(n^{2.807}\right)$
[Schönhage 81]
$O\left(n^{2.52}\right)$
[Coppersmith, Winograd 90]
$O\left(n^{2.375}\right)$
[Le Gall 14]
$O\left(n^{2.3728639}\right)$

Sub-cubic linear algebra

< 1969: $O\left(n^{3}\right)$ for everyone (Gauss, Householder, Danilevskǐi, etc)

Matrix Multiplication $\rightsquigarrow O\left(n^{\omega}\right)$
[Strassen 69]:
$O\left(n^{2.807}\right)$
$O\left(n^{2.52}\right)$
[Schönhage 81]
[Coppersmith, Winograd 90]
$O\left(n^{2.375}\right)$
$O\left(n^{2.3728639}\right)$
[Le Gall 14]

$$
u(n \quad)
$$

Other operations
[Strassen 69]: Inverse in $O\left(n^{\omega}\right)$
[Schönhage 72]:
QR in $O\left(n^{\omega}\right)$
[Bunch, Hopcroft 74]: LU in $O\left(n^{\omega}\right)$
[lbarra \& al. 82]:
Rank in $O\left(n^{\omega}\right)$ [Keller-Gehrig 85]: CharPoly in $O\left(n^{\omega} \log n\right)$

Sub-cubic linear algebra

< 1969: $O\left(n^{3}\right)$ for everyone (Gauss, Householder, Danilevskiii, etc)

Matrix Multiplication $\rightsquigarrow O\left(n^{\omega}\right)$
[Strassen 69]:
$O\left(n^{2.807}\right)$
$O\left(n^{2.52}\right)$
[Schönhage 81]
[Coppersmith, Winograd 90]
$O\left(n^{2.375}\right)$

$$
O\left(n^{2.3728639}\right)
$$

[Le Gall 14]

Other operations
[Strassen 69]: Inverse in $O\left(n^{\omega}\right)$ [Schönhage 72]: \quad QR in $O\left(n^{\omega}\right)$
[Bunch, Hopcroft 74]: LU in $O\left(n^{\omega}\right)$
[lbarra \& al. 82]:
Rank in $O\left(n^{\omega}\right)$ [Keller-Gehrig 85]: CharPoly in $O\left(n^{\omega} \log n\right)$

MatMul has become a building block in theoretical reductions

Reductions: theory

Reductions: theory

Common mistrust
Fast linear algebra is
X never faster
X numerically unstable

Reductions: theory and practice

Common mistrust
Fast linear algebra is
X never faster
X numerically unstable
Lucky coincidence
\checkmark same building block in theory and in practice
\rightsquigarrow reduction trees are still relevant

Reductions: theory and practice

Common mistrust

Fast linear algebra is
X never faster
X numerically unstable

Lucky coincidence

\checkmark same building block in theory and in practice
\rightsquigarrow reduction trees are still relevant
Road map towards efficiency in practice
(1) Tune the MatMul building block.
(2) Tune the reductions.

Putting it together: MatMul building block over $\mathbb{Z} / p \mathbb{Z}$

Ingedients [FFLAS-FFPACK library]

- Compute over \mathbb{Z} and delay modular reductions

$$
\rightsquigarrow k\left(\frac{p-1}{2}\right)^{2}<2^{\text {mantissa }}
$$

Putting it together: MatMul building block over $\mathbb{Z} / p \mathbb{Z}$

Ingedients [FFLAS-FFPACK library]

- Compute over \mathbb{Z} and delay modular reductions

$$
\leadsto k\left(\frac{p-1}{2}\right)^{2}<2^{53}
$$

- Fastest integer arithmetic: double
- Cache optimizations
\rightsquigarrow numerical BLAS

Putting it together: MatMul building block over $\mathbb{Z} / p \mathbb{Z}$

Ingedients [FFLAS-FFPACK library]

- Compute over \mathbb{Z} and delay modular reductions

$$
\rightsquigarrow 9^{\ell}\left\lfloor\frac{k}{2^{\ell}}\right\rfloor\left(\frac{p-1}{2}\right)^{2}<2^{53}
$$

- Fastest integer arithmetic: double
- Cache optimizations
\rightsquigarrow numerical BLAS
- Strassen-Winograd $6 n^{2.807}+\ldots$

Putting it together: MatMul building block over $\mathbb{Z} / p \mathbb{Z}$

Ingedients [FFLAS-FFPACK library]

- Compute over \mathbb{Z} and delay modular reductions

$$
\rightsquigarrow 9^{\ell}\left\lfloor\frac{k}{2^{\ell}}\right\rfloor\left(\frac{p-1}{2}\right)^{2}<2^{53}
$$

- Fastest integer arithmetic: double
- Cache optimizations
\rightsquigarrow numerical BLAS
- Strassen-Winograd $6 n^{2.807}+\ldots$
with memory efficient schedules [Boyer, Dumas, P. and Zhou 09] Tradeoffs:

$$
\begin{aligned}
& \text { Fully in-place in } \\
& 7.2 n^{2.807}+\ldots
\end{aligned}
$$

Sequential Matrix Multiplication

Sequential Matrix Multiplication

$p=83, \rightsquigarrow 1 \bmod / 10000 \mathrm{mul}$.

Sequential Matrix Multiplication

$p=83, \rightsquigarrow 1 \bmod / 10000 \mathrm{mul}$.
$p=821$, $\rightsquigarrow 1 \bmod / 100 \mathrm{mul}$.

Sequential Matrix Multiplication

$p=83, \rightsquigarrow 1 \bmod / 10000 \mathrm{mul} . \quad p=1898131, \rightsquigarrow 1 \mathrm{mod} / 10000 \mathrm{mul}$. $p=821$, $\rightsquigarrow 1 \bmod / 100 \mathrm{mul}$. $p=18981307, \rightsquigarrow 1 \mathrm{mod} / 100 \mathrm{mul}$.

Reductions in dense linear algebra

LU decomposition

- Block recursive algorithm \rightsquigarrow reduces to MatMul $\rightsquigarrow O\left(n^{\omega}\right)$

n	1000	5000	10000	15000	20000
LAPACK-dgetrf	$\mathbf{0 . 0 2 4 s}$	$\mathbf{2 . 0 1 s}$	$\mathbf{1 4 . 8 8 s}$	48.78 s	113.66
fflas-ffpack	0.058 s	2.46 s	$\mathbf{1 6 . 0 8 \mathrm { s }}$	$\mathbf{4 7 . 4 7 s}$	$\mathbf{1 0 5 . 9 6 s}$

Intel Haswell E3-1270 3.0Ghz using OpenBLAS-0.2.9

Reductions in dense linear algebra

LU decomposition

- Block recursive algorithm \rightsquigarrow reduces to MatMul $\rightsquigarrow O\left(n^{\omega}\right)$

n	1000	5000	10000	15000	20000
LAPACK-dgetrf	$\mathbf{0 . 0 2 4 s}$	$\mathbf{2 . 0 1 s}$	$\mathbf{1 4 . 8 8 s}$	48.78 s	113.66
fflas-ffpack	0.058 s	2.46 s	$\mathbf{1 6 . 0 8 \mathrm { s }}$	$\mathbf{4 7 . 4 7 s}$	$\mathbf{1 0 5 . 9 6 s}$

Intel Haswell E3-1270 3.0Ghz using OpenBLAS-0.2.9

Characteristic Polynomial

- A new reduction to matrix multiplication in $O\left(n^{\omega}\right)$.

n	1000	2000	5000	10000
magma-v2.19-9	1.38 s	24.28 s	332.7 s	2497s
fflas-ffpack	$\mathbf{0 . 5 3 2 \mathrm { s }}$	$\mathbf{2 . 9 3 6 s}$	$\mathbf{3 2 . 7 1 \mathrm { s }}$	$\mathbf{2 1 9 . 2 \mathrm { s }}$

Intel Ivy-Bridge i5-3320 2.6Ghz using OpenBLAS-0.2.9

Reductions in dense linear algebra

LU decomposition

- Block recursive algorithm \rightsquigarrow reduces to MatMul $\rightsquigarrow O\left(n^{\omega}\right)$

n	1000	5000	10000	15000	20000
LAPACK-dgetrf	$\mathbf{0 . 0 2 4 s}$	$\mathbf{2 . 0 1 s}$	$\mathbf{1 4 . 8 8 \mathrm { s }}$	48.78 s	113.66
fflas-ffpack	0.058 s	2.46s	16.08s	$\mathbf{4 7 . 4 7 \mathrm { s }}$	$\mathbf{1 0 5 . 9 6 \mathrm { s }}$
Intel Haswell E3-1270				$\times 7.0 \mathrm{Ghz}$ using OpenBLAS-0.2.9	

Characteristic Polynomial

- A new reduction to matrix multiplication in $O\left(n^{\omega}\right)$.

| n | 1000 | 2000 | 5000 | 10000 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| magma-v2.19-9 | 1.38 s | 24.28 s | 332.7 s | 2497 s |
| fflas-ffpack | $\mathbf{0 . 5 3 2 \mathrm { s }}$ | $\mathbf{2 . 9 3 6 \mathrm { s }}$ | 32.71s | $\mathbf{2 1 9 . 2 \mathrm { s }}$ |
| Intel Ivy-Bridge i5-3320 | 2.6 Ghz using OpenBLAS-0.2.9 | | | |

The case of Gaussian elimination

Which reduction to MatMul ?
 LAPACK

Tile iterative PLASMA

Tile recursive FFLAS-FFPACK

The case of Gaussian elimination

Which reduction to MatMul ?

Tile recursive FFLAS-FFPACK

- Sub-cubic complexity: recursive algorithms

The case of Gaussian elimination

Which reduction to MatMul ?

- Sub-cubic complexity: recursive algorithms
- Data locality

Block algorithms

Tiled Iterative

getrf: $A \rightarrow L$, \qquad

Slab Recursive
Tiled Recursive

Block algorithms

Tiled Iterative

trsm: $B \leftarrow B U^{-1}, B \leftarrow L^{-1} B$
gemm: $C \leftarrow C-A \times B$

Slab Recursive
Tiled Recursive

Block algorithms

Tiled Iterative
getrf: $A \rightarrow L$, trsm: $B \leftarrow B U^{-1}, B \leftarrow L^{-1} B$ gemm: $C \leftarrow C-A \times B$

Slab Recursive
Tiled Recursive

Block algorithms

Tiled Iterative
getrf: $A \rightarrow L$, trsm: $B \leftarrow B U^{-1}, B \leftarrow L^{-1} B$ gemm: $C \leftarrow C-A \times B$

Slab Recursive
Tiled Recursive

Block algorithms

Tiled Iterative

Tiled Recursive
Slab Recursive
getrf: $A \rightarrow L$,

Block algorithms

Tiled Iterative
trsm: $B \leftarrow B U^{-1}, B \leftarrow L^{-1} B$
gemm: $C \leftarrow C-A \times B$

Slab Recursive

Tiled Recursive

Block algorithms

Tiled Iterative

Tiled Recursive
Slab Recursive

getrf: $A \rightarrow L$,

Block algorithms

Tiled Iterative

trsm: $B \leftarrow B U^{-1}, B \leftarrow L^{-1} B$
gemm: $C \leftarrow C-A \times B$

Slab Recursive

Tiled Recursive

Block algorithms

Tiled Iterative

Tiled Recursive
Slab Recursive

getrf: $A \rightarrow L$,

Block algorithms

Tiled Iterative

trsm: $B \leftarrow B U^{-1}, B \leftarrow L^{-1} B$
gemm: $C \leftarrow C-A \times B$

Slab Recursive

Tiled Recursive

Block algorithms

Tiled Iterative

Tiled Recursive
Slab Recursive

getrf: $A \rightarrow L$,

Block algorithms

Tiled Iterative

Slab Recursive

getrf: $A \rightarrow L$,

Tiled Recursive

Block algorithms

Tiled Iterative

trsm: $B \leftarrow B U^{-1}$,
gemm: $C \leftarrow C-A \times B$

Slab Recursive

Tiled Recursive

Block algorithms

Tiled Iterative

Slab Recursive

getrf: $A \rightarrow L$,

Tiled Recursive

Block algorithms

Tiled Iterative

trsm: $B \leftarrow B U^{-1}$,
gemm: $C \leftarrow C-A \times B$

Slab Recursive

Tiled Recursive

Block algorithms

Tiled Iterative

getrf: $A \rightarrow L$,
trsm: $B \leftarrow B U^{-1}$,
gemm: $C \leftarrow C-A \times B$

Block algorithms

Tiled Iterative

Slab Recursive

getrf: $A \rightarrow L$,
Tiled Recursive

Counting Modular Reductions

\[

\]

Counting Modular Reductions

$\vec{\wedge}$	Tiled Iter. Right looking	$\frac{1}{3 k} \mathbf{n}^{3}+\left(1-\frac{1}{k}\right) n^{2}+\left(\frac{1}{6} k-\frac{5}{2}+\frac{3}{k}\right) n$
\wedge	Tiled Iter. Left looking	$\left(\mathbf{2}-\frac{1}{2 k}\right) \mathbf{n}^{2}+\left(-\frac{5}{2} k-1+\frac{2}{k}\right) n+2 k^{2}-2 k+1$
\approx	Tiled Iter. Crout	$\left(\frac{5}{2}-\frac{1}{\mathbf{k}}\right) \mathbf{n}^{2}+\left(-2 k-\frac{5}{2}+\frac{3}{k}\right) n+k^{2}$
	Iter. Right looking	$\frac{1}{3} \mathbf{n}^{3}-\frac{1}{3} n$
	Ite. Left Looking	$\frac{3}{2} \mathbf{n}^{2}-\frac{3}{2} n+1$
\approx	Iter. Crout	$\frac{3}{2} \mathbf{n}^{2}-\frac{7}{2} n+3$

Counting Modular Reductions

$\stackrel{\rightharpoonup}{\wedge}$	Tiled Iter. Right looking Tiled Iter. Left looking Tiled Iter. Crout	$\begin{aligned} & \frac{1}{3 \mathrm{k}} \mathbf{n}^{3}+\left(1-\frac{1}{k}\right) n^{2}+\left(\frac{1}{6} k-\frac{5}{2}+\frac{3}{k}\right) n \\ & \left(\mathbf{2}-\frac{1}{2 k}\right)^{2} \mathbf{n}^{2}+\left(-\frac{5}{2} k-1+\frac{2}{k}\right) n+2 k^{2}-2 k+1 \\ & \left(\frac{5}{2}-\frac{1}{k}\right) \mathbf{n}^{2}+\left(-2 k-\frac{5}{2}+\frac{3}{k}\right) n+k^{2} \end{aligned}$
-	Iter. Right looking	$\frac{1}{3} \mathbf{n}^{3}-\frac{1}{3} n$
11	Iter. Left Looking	$\frac{3}{2} \mathbf{n}^{2}-\frac{3}{2} n+1$
2	Iter. Crout	$\frac{3}{2} \mathbf{n}^{2}-\frac{7}{2} n+3$
	Tiled Recursive	$\mathbf{2 n} \mathbf{n}^{2}-n \log _{2} n-n$
	Slab Recursive	$\left(\mathbf{1}+\frac{1}{4} \log _{2} \mathbf{n}\right) \mathbf{n}^{2}-\frac{1}{2} n \log _{2} n-n$

Impact in practice

sequential LU decomposition variants on one core

- As_anticinated • Right-Inokino < Crout < I eft-Inokino

Impact in practice

sequential LU decomposition variants on one core

- As_anticinated • Right-Inokino < Crout < I oft-Inokino

Dealing with rank deficiencies and computing rank profiles

Rank profiles: first linearly independent columns

- Major invariant of a matrix (echelon form)
- Gröbner basis computations (Macaulay matrix)

- Krylov methods

Gaussian elimination revealing echelon forms:
[Ibarra, Moran and Hui 82]
[Keller-Gehrig 85]
[Jeannerod, P. and Storjohann 13]

Computing rank profiles

Lessons learned (or what we thought was necessary):

- treat rows in order
- exhaust all columns before considering the next row
- slab block splitting required (recursive or iterative) \rightsquigarrow similar to partial pivoting

Computing rank profiles

Lessons learned (or what we thought was necessary):

- treat rows in order
- exhaust all columns before considering the next row
- slab block splitting required (recursive or iterative) \rightsquigarrow similar to partial pivoting

Tiled recursive PLUQ [Dumas P. Sultan 13,15]

(1) Generalized to handle rank deficiency
$\triangleright 4$ recursive calls necessary
\triangleright in-place computation
(2) Pivoting strategies exist to recover rank profile and echelon forms

A tiled recursive algorithm

[Dumas, P. and Sultan 13]

2×2 block splitting

A tiled recursive algorithm

[Dumas, P. and Sultan 13]

Recursive call

A tiled recursive algorithm

[Dumas, P. and Sultan 13]

TRSM: $B \leftarrow B U^{-1}$

A tiled recursive algorithm

[Dumas, P. and Sultan 13]

TRSM: $B \leftarrow L^{-1} B$

A tiled recursive algorithm

[Dumas, P. and Sultan 13]

MatMul: $C \leftarrow C-A \times B$

A tiled recursive algorithm

[Dumas, P. and Sultan 13]

MatMul: $C \leftarrow C-A \times B$

A tiled recursive algorithm

[Dumas, P. and Sultan 13]

MatMul: $C \leftarrow C-A \times B$

A tiled recursive algorithm

[Dumas, P. and Sultan 13]

2 independent recursive calls

A tiled recursive algorithm

[Dumas, P. and Sultan 13]

TRSM: $B \leftarrow B U^{-1}$

A tiled recursive algorithm

[Dumas, P. and Sultan 13]

TRSM: $B \leftarrow L^{-1} B$

A tiled recursive algorithm

[Dumas, P. and Sultan 13]

MatMul: $C \leftarrow C-A \times B$

A tiled recursive algorithm

[Dumas, P. and Sultan 13]

MatMul: $C \leftarrow C-A \times B$

A tiled recursive algorithm

[Dumas, P. and Sultan 13]

MatMul: $C \leftarrow C-A \times B$

A tiled recursive algorithm

[Dumas, P. and Sultan 13]

Recursive call

A tiled recursive algorithm

[Dumas, P. and Sultan 13]

Puzzle game (block cyclic rotations)

A tiled recursive algorithm

[Dumas, P. and Sultan 13]

- $O\left(m n r^{\omega-2}\right)$ (degenerating to $2 / 3 n^{3}$)
- computing col. and row rank profiles of all leading sub-matrices
- fewer modular reductions than slab algorithms
- rank deficiency introduces parallelism

Computing all rank profiles at once

Dumas, P. and Sultan ISSAC'15 (Thursday 9 @ 3PM)

Definition (Rank Profile matrix)

The unique $\mathcal{R}_{A} \in\{0,1\}^{m \times n}$ such that any pair of (i, j)-leading sub-matrix of \mathcal{R}_{A} and of A have the same rank.

A
1 2 3 4 2 4 5 8 1 2 3 4 3 5 9 12
$\boldsymbol{\mathcal { R }}$
1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0

Computing all rank profiles at once

目 Dumas, P. and Sultan ISSAC'15 (Thursday 9 @ 3PM)

Definition (Rank Profile matrix)

The unique $\mathcal{R}_{A} \in\{0,1\}^{m \times n}$ such that any pair of (i, j)-leading sub-matrix of \mathcal{R}_{A} and of A have the same rank.

Theorem

- RowRP and ColRP read directly on $\mathcal{R}(A)$
- Same holds for any (i, j)-leading submatrix.

A	\mathcal{R}
1 2 3	10 0 0
2 4 5 8	$\begin{array}{lllll}0 & 0 & 1 & 0\end{array}$
$\begin{array}{ll}12 & 2\end{array}$	0000
$\begin{array}{lllll}3 & 5 & 9 & 12\end{array}$	01100

RowRP $=\{1\}$
CoIRP $=\{1\}$

Computing all rank profiles at once

目 Dumas, P. and Sultan ISSAC'15 (Thursday 9 @ 3PM)

Definition (Rank Profile matrix)

The unique $\mathcal{R}_{A} \in\{0,1\}^{m \times n}$ such that any pair of (i, j)-leading sub-matrix of \mathcal{R}_{A} and of A have the same rank.

Theorem

- RowRP and ColRP read directly on $\mathcal{R}(A)$
- Same holds for any (i, j)-leading submatrix.

| 1 | 2 | 3 | 4 |
| :---: | :---: | :--- | :--- | :--- |
| 2 | 4 | 5 | 8 |
| 1 | 2 | 3 | 4 |
| 3 | 5 | 9 | 12 |\(\rightarrow\left|\begin{array}{lll|l|}\hline 1 \& 0 \& 0 \& 0

0 \& 0 \& 1 \& 0

0 \& 0 \& 0 \& 0

0 \& 1 \& 0 \& 0\end{array}\right|\)

RowRP $=\{1,2\}$
CoIRP $=\{1,3\}$

Computing all rank profiles at once

目 Dumas, P. and Sultan ISSAC'15 (Thursday 9 @ 3PM)

Definition (Rank Profile matrix)

The unique $\mathcal{R}_{A} \in\{0,1\}^{m \times n}$ such that any pair of (i, j)-leading sub-matrix of \mathcal{R}_{A} and of A have the same rank.

Theorem

- RowRP and ColRP read directly on $\mathcal{R}(A)$
- Same holds for any (i, j)-leading submatrix.

A
$\left.\begin{array}{\|l\|ll\|}\hline 1 & 2 & 3 \\ 2 & 4 \\ 2 & 4 & 5\end{array}\right)$
1

RowRP $=\{1,4\}$
CoIRP $=\{1,2\}$

Computing all rank profiles at once

目 Dumas, P. and Sultan ISSAC'15 (Thursday 9 @ 3PM)

Definition (Rank Profile matrix)

The unique $\mathcal{R}_{A} \in\{0,1\}^{m \times n}$ such that any pair of (i, j)-leading sub-matrix of \mathcal{R}_{A} and of A have the same rank.

Theorem

- RowRP and ColRP read directly on $\mathcal{R}(A)$
- Same holds for any (i, j)-leading submatrix.

$$
A=P L U Q=P\left[\begin{array}{cc}
L & 0 \\
M & I_{m-r}
\end{array}\right] \quad\left[\begin{array}{ll}
I_{r} & \\
& 0
\end{array}\right] \quad\left[\begin{array}{cc}
U & V \\
& I_{n-r}
\end{array}\right] Q
$$

A

1	2	3
4	4	
2	4	5

1
1 2

RowRP $=\{1,4\}$
CoIRP $=\{1,2\}$

Computing all rank profiles at once

目 Dumas, P. and Sultan ISSAC'15 (Thursday 9 @ 3PM)

Definition (Rank Profile matrix)

The unique $\mathcal{R}_{A} \in\{0,1\}^{m \times n}$ such that any pair of (i, j)-leading sub-matrix of \mathcal{R}_{A} and of A have the same rank.

Theorem

- RowRP and ColRP read directly on $\mathcal{R}(A)$
- Same holds for any (i, j)-leading submatrix.
A

1	2	3	4					
2	4	5	8					
1	2	3	4					
3	5	9	12	\longrightarrow	1	0	0	0
:---	:---	:---	:---					
0	0	1	0					
0	0	0	0					
0	0	0						
0	1	0	0					

RowRP $=\{1,4\}$
CoIRP $=\{1,2\}$

$$
A=P L U Q=P\left[\begin{array}{cc}
L & 0 \\
M & I_{m-r}
\end{array}\right] P^{T} P\left[\begin{array}{ll}
I_{r} & \\
& 0
\end{array}\right] Q Q^{T}\left[\begin{array}{cc}
U & V \\
& I_{n-r}
\end{array}\right] Q
$$

Computing all rank profiles at once

© Dumas, P. and Sultan ISSAC'15 (Thursday 9 @ 3PM)

Definition (Rank Profile matrix)

The unique $\mathcal{R}_{A} \in\{0,1\}^{m \times n}$ such that any pair of (i, j)-leading sub-matrix of \mathcal{R}_{A} and of A have the same rank.

Theorem

- RowRP and ColRP read directly on $\mathcal{R}(A)$
- Same holds for any (i, j)-leading submatrix.
A

1	2	3	4					
2	4	5	8					
1	2	3	4					
3	5	9	12					
				\rightarrow	1	0	0	0
:---	:---	:---	:---					
0	0	1	0					
0	0	0	0					
0	0							
0	1	0	0					

RowRP $=\{1,4\}$
CoIRP $=\{1,2\}$

$$
A=P L U Q=\underbrace{P\left[\begin{array}{cc}
L & 0 \\
M & I_{m-r}
\end{array}\right] P^{T}}_{\bar{L}} \underbrace{P\left[\begin{array}{ll}
I_{r} & \\
& 0
\end{array}\right]}_{\Pi_{P, Q}} \underbrace{Q}_{\bar{U}} \underbrace{Q^{T}} \begin{array}{cc}
U & V \\
& I_{n-r}
\end{array}] Q
$$

Computing all rank profiles at once

Dumas, P. and Sultan ISSAC'15 (Thursday 9 @ 3PM)

Definition (Rank Profile matrix)

The unique $\mathcal{R}_{A} \in\{0,1\}^{m \times n}$ such that any pair of (i, j)-leading sub-matrix of \mathcal{R}_{A} and of A have the same rank.

Theorem

- RowRP and ColRP read directly on $\mathcal{R}(A)$
- Same holds for any (i, j)-leading submatrix.

A	\mathcal{R}
1 2 3 4	
2 4 5 8	0 0 1 0
1234	0 0 0 0
	0 1 0

$$
\begin{aligned}
& \text { RowRP }=\{1,4\} \\
& \operatorname{CoIRP}=\{1,2\}
\end{aligned}
$$

$$
A=P L U Q=\underbrace{P\left[\begin{array}{cc}
L & 0 \\
M & I_{m-r}
\end{array}\right] P^{T}}_{\bar{L}} \underbrace{P\left[\begin{array}{ll}
I_{r} & \\
& 0
\end{array}\right]}_{\Pi_{P, Q}} \underbrace{Q}_{\bar{U}} \underbrace{Q^{T}} \begin{array}{cc}
U & V \\
& I_{n-r}
\end{array}] Q
$$

With appropriate pivoting: $\Pi_{P, Q}=\mathcal{R}(A)$

Reductions in black box linear algebra

Matrix-Vector Product: building block, \rightsquigarrow costs $E(n)$
Minimal polynomial: [Wiedemann 86] \rightsquigarrow iterative Krylov/Lanczos methods $\rightsquigarrow O\left(n E(n)+n^{2}\right)$

Reductions in black box linear algebra

Matrix-Vector Product: building block, \rightsquigarrow costs $E(n)$
Minimal polynomial: [Wiedemann 86] \rightsquigarrow iterative Krylov/Lanczos methods $\rightsquigarrow O\left(n E(n)+n^{2}\right)$
Rank, Det, Solve: [Chen\& AI. 02]
\leadsto reduces to MinPoly + preconditioners
$\rightsquigarrow O^{\sim}\left(n E(n)+n^{2}\right)$

Reductions in black box linear algebra

Matrix-Vector Product: building block, \rightsquigarrow costs $E(n)$
Minimal polynomial: [Wiedemann 86] \rightsquigarrow iterative Krylov/Lanczos methods $\rightsquigarrow O\left(n E(n)+n^{2}\right)$
Rank, Det, Solve: [Chen\& AI. 02] \rightsquigarrow reduces to MinPoly + preconditioners $\rightsquigarrow O^{`}\left(n E(n)+n^{2}\right)$
Characteristic Poly.: [Dumas P. Saunders 09] \rightsquigarrow reduces to MinPoly, Rank, ...

Reductions in black box linear algebra

Matrix-Vector Product: building block, \rightsquigarrow costs $E(n)$

Minimal polynomial: [Wiedemann 86] \rightsquigarrow iterative Krylov/Lanczos methods $\rightsquigarrow O\left(n E(n)+n^{2}\right)$
Rank, Det, Solve: [Chen\& AI. 02] \leadsto reduces to MinPoly + preconditioners $\rightsquigarrow O^{\wedge}\left(n E(n)+n^{2}\right)$

Characteristic Poly.: [Dumas P. Saunders 09] \rightsquigarrow reduces to MinPoly, Rank, ...

Outline

(1) Choosing the underlying arithmetic

- Using boolean arithmetic
- Using machine word arithmetic
- Larger field sizes
(2) Reductions and building blocks
- In dense linear algebra
- In blackbox linear algebra
(3) Size dimension trade-offs
- Hermite normal form
- Frobenius normal form
(4) Parallel exact linear algebra
- Ingredients for the parallelization
- Parallel dense linear algebra mod p

Size Dimension trade-offs

Computing with coefficients of varying size: $\mathbb{Z}, \mathbb{Q}, K[X], \ldots$

Multimodular methods

over $\mathrm{K}[\mathrm{X}]$: evaluation-interpolation
over \mathbb{Z}, \mathbb{Q} : Chinese Remainder Theorem

$$
\text { Cost }=\text { Algebraic Cost } \times \text { Size }(\text { Output })
$$

\checkmark avoids coefficient blow-up
X uniform (worst case) cost for all arithmetic ops

Size Dimension trade-offs

Computing with coefficients of varying size: $\mathbb{Z}, \mathbb{Q}, K[X], \ldots$

Multimodular methods

over $\mathrm{K}[\mathrm{X}]$: evaluation-interpolation
over \mathbb{Z}, \mathbb{Q} : Chinese Remainder Theorem

$$
\text { Cost }=\text { Algebraic Cost } \times \text { Size }(\text { Output })
$$

\checkmark avoids coefficient blow-up
X uniform (worst case) cost for all arithmetic ops

Example

Hadamard's bound: $|\operatorname{det}(A)| \leq\left(\|A\|_{\infty} \sqrt{n}\right)^{n}$.
$\operatorname{LinSys}_{\mathbb{Z}}(n)=O\left(n^{\omega} \times n\left(\log n+\log \|A\|_{\infty}\right)\right)$

Size Dimension trade-offs

Computing with coefficients of varying size: $\mathbb{Z}, \mathbb{Q}, K[X], \ldots$

Multimodular methods

over K[X]: evaluation-interpolation
over \mathbb{Z}, \mathbb{Q} : Chinese Remainder Theorem

$$
\text { Cost }=\text { Algebraic Cost } \times \text { Size }(\text { Output })
$$

\checkmark avoids coefficient blow-up
X uniform (worst case) cost for all arithmetic ops

Example

Hadamard's bound: $|\operatorname{det}(A)| \leq\left(\|A\|_{\infty} \sqrt{n}\right)^{n}$.
$\left.\operatorname{LinSys}_{\mathbb{Z}}(n)=O\left(n^{\omega} \times n\left(\log n+\log \|A\|_{\infty}\right)\right)=O^{\sim}\left(n^{\omega+1} \log \|A\|_{\infty}\right)\right]$

Size Dimension trade-offs

Computing with coefficients of varying size: $\mathbb{Z}, \mathbb{Q}, K[X], \ldots$

Lifting techniques

p-adic lifting: [Moenck \& Carter 79, Dixon 82]

- One computation over \mathbb{Z}_{p}
- Iterative lifting of the solution to \mathbb{Z}, \mathbb{Q}

> Example
> $\operatorname{LinSys}_{\mathbb{Z}}(n)=O\left(n^{3} \log \|A\|_{\infty}^{1+\epsilon}\right)$

Size Dimension trade-offs

Computing with coefficients of varying size: $\mathbb{Z}, \mathbb{Q}, K[X], \ldots$

Lifting techniques

p-adic lifting: [Moenck \& Carter 79, Dixon 82]

- One computation over \mathbb{Z}_{p}
- Iterative lifting of the solution to \mathbb{Z}, \mathbb{Q}

High order lifting : [Storjohann 02,03]

- Fewer iteration steps
- larger dimension in the lifting

Example
$\operatorname{LinSys}_{\mathbb{Z}}(n)=O \sim\left(n^{\omega} \log \|A\|_{\infty}\right)$

Improving time Complexities

Matrix multiplication: door to fast linear algebra

- over $\mathbb{Z}: \quad O\left(n^{\omega} M(\log \|A\|)\right)=O^{\curlyvee}\left(n^{\omega} \log \|A\|\right)$

Improving time Complexities

Matrix multiplication: door to fast linear algebra

- over $\mathbb{Z}: \quad O\left(n^{\omega} M(\log \|A\|)\right)=O^{\curlyvee}\left(n^{\omega} \log \|A\|\right)$

Equivalence over \mathbb{Z} or $\mathrm{K}[\mathrm{X}]$: Hermite normal form

- [Kannan \& Bachem 79]:
- [Chou \& Collins 82]:
- [Domich \& AI. 87], [Illiopoulos 89]:
- [Micciancio \& Warinschi01]:
- [Storjohann \& Labahn 96]:
-

$$
\begin{array}{r}
\in P \\
O^{\sim}\left(n^{6} \log \|A\|\right) \\
O^{\sim}\left(n^{4} \log \|A\|\right) \\
O^{\sim}\left(n^{5} \log \|A\|^{2}\right), \\
O^{\sim}\left(n^{3} \log \|A\|\right) \text { heur. } \\
O^{\sim}\left(n^{\omega+1} \log \|A\|\right) \\
O^{\sim}\left(n^{3} \log \|A\|\right)
\end{array}
$$
\]

Improving time Complexities

Matrix multiplication: door to fast linear algebra

- over $\mathbb{Z}: \quad O\left(n^{\omega} M(\log \|A\|)\right)=O^{\curlyvee}\left(n^{\omega} \log \|A\|\right)$

Equivalence over \mathbb{Z} or $\mathrm{K}[\mathrm{X}]$: Hermite normal form

- [Kannan \& Bachem 79]:
- [Chou \& Collins 82]:
$O\left(n^{6} \log \|A\|\right)$ $O^{\sim}\left(n^{4} \log \|A\|\right)$ $O\left(n^{5} \log \|A\|^{2}\right)$, $O\left(n^{3} \log \|A\|\right)$ heur.
$O^{\sim}\left(n^{\omega+1} \log \|A\|\right)$
$O^{\sim}\left(n^{3} \log \|A\|\right)$
Similarity over a field: Frobenius normal form
- [Giesbrecht 93]:
- [Storjohann 00]:
- [P. \& Storjohann 07]:
$O^{\sim}\left(n^{\omega}\right)$ probabilistic $O^{\sim}\left(n^{\omega}\right)$ deterministic $O\left(n^{\omega}\right)$ probabilistic

Improving time Complexities

Matrix multiplication: door to fast linear algebra

- over $\mathbb{Z}: \quad O\left(n^{\omega} M(\log \|A\|)\right)=O^{\curlyvee}\left(n^{\omega} \log \|A\|\right)$

Equivalence over \mathbb{Z} or $\mathrm{K}[\mathrm{X}]$: Hermite normal form

- [Kannan \& Bachem 79]:
- [Chou \& Collins 82]:
- [Domich \& AI. 87], [Illiopoulos 89]:
- [Micciancio \& Warinschi01]:
- [Storjohann \& Labahn 96]:
-

$$
\begin{array}{r}
\in P \\
O^{\sim}\left(n^{6} \log \|A\|\right) \\
O^{\sim}\left(n^{4} \log \|A\|\right) \\
O^{\sim}\left(n^{5} \log \|A\|^{2}\right), \\
O^{\sim}\left(n^{3} \log \|A\|\right) \text { heur. } \\
O^{\sim}\left(n^{\omega+1} \log \|A\|\right) \\
O^{\prime}\left(n^{3} \log \|A\|\right)
\end{array}
$$
\]

Similarity over a field: Frobenius normal form

- [Giesbrecht 93]:
- [Storjohann 00]:
- [P. \& Storjohann 07]:
$O^{\sim}\left(n^{\omega}\right)$ probabilistic $O^{\sim}\left(n^{\omega}\right)$ deterministic $O\left(n^{\omega}\right)$ probabilistic

Building blocks and reductions

In brief

Reductions to a building block
Matrix Mult: block rec. $\sum_{i=1}^{\log n} n\left(\frac{n}{2^{i}}\right)^{\omega-1}=O\left(n^{\omega}\right)$
(Gauss, REF)
Matrix Mult: Iterative $\sum_{k=1}^{n} k\left(\frac{n}{k}\right)^{\omega}=O\left(n^{\omega}\right)$
(Frobenius)
Linear Sys: over \mathbb{Z}
(Hermite Normal Form)
Size/dimension compromises

- Hermite normal form : rank 1 updates reducing the determinant
- Frobenius normal form : degree k, dimension n / k for $k=1 \ldots n$

Hermite normal form: naive algorithm

$$
\begin{array}{ll}
\text { for } i=1 \ldots n \text { do } & \\
\quad\left(g, t_{i}, \ldots, t_{n}\right)=\operatorname{xgcd}\left(A_{i, i}, A_{i+1, i}, \ldots, A_{n, i}\right) & \\
L_{i} \leftarrow \sum_{j=i+1}^{n} t_{j} L_{j} & \\
\text { for } j=i+1 \ldots n \text { do } & \\
\quad L_{j} \leftarrow L_{j}-\frac{A_{j, i}}{g} L_{i} & \\
\text { end for eliminate } & \\
\text { for } j=1 \ldots i-1 \text { do } & \\
\quad L_{j} \leftarrow L_{j}-\left\lfloor\frac{A_{j, i}}{g}\right\rfloor L_{i} & \triangleright \text { reduce } \\
\text { end for } &
\end{array}
$$

Computing modulo the determinant [Domich \& AI. 87]

Property

- For A non-singular: $\max _{i} \sum_{j} H_{i j} \leq \operatorname{det} H=\operatorname{det} A$

Example

$$
\begin{gathered}
A=\left[\begin{array}{cccccc}
-5 & 8 & -3 & -9 & 5 & 5 \\
-2 & 8 & -2 & -2 & 8 & 5 \\
7 & -5 & -8 & 4 & 3 & -4 \\
1 & -1 & 6 & 0 & 8 & -3
\end{array}\right], H=\left[\begin{array}{cccccc}
1 & 0 & 3 & 237 & -299 & 90 \\
0 & 1 & 1 & 103 & -130 & 40 \\
0 & 0 & 4 & 352 & -450 & 135 \\
0 & 0 & 0 & 486 & -627 & 188
\end{array}\right] \\
\operatorname{det} A=1944
\end{gathered}
$$

Computing modulo the determinant [Domich \& AI. 87]

Property

- For A non-singular: $\max _{i} \sum_{j} H_{i j} \leq \operatorname{det} H=\operatorname{det} A$
- Every computation can be done modulo $d=\operatorname{det} A$:

$$
U^{\prime}\left[\begin{array}{cc}
A & \\
d I_{n} & I_{n}
\end{array}\right]=\left[\begin{array}{ll}
H & \\
& I_{n}
\end{array}\right]
$$

Example

$$
\begin{gathered}
A=\left[\begin{array}{cccccc}
-5 & 8 & -3 & -9 & 5 & 5 \\
-2 & 8 & -2 & -2 & 8 & 5 \\
7 & -5 & -8 & 4 & 3 & -4 \\
1 & -1 & 6 & 0 & 8 & -3
\end{array}\right], H=\left[\begin{array}{cccccc}
1 & 0 & 3 & 237 & -299 & 90 \\
0 & 1 & 1 & 103 & -130 & 40 \\
0 & 0 & 4 & 352 & -450 & 135 \\
0 & 0 & 0 & 486 & -627 & 188
\end{array}\right] \\
\operatorname{det} A=1944
\end{gathered}
$$

$\rightsquigarrow O\left(n^{3}\right) \times M(n(\log n+\log \|A\|))=O^{\Upsilon}\left(n^{5} \log \|A\|^{2}\right)$

Computing modulo the determinant

- Pessimistic estimate on the arithmetic size
- d large but most coefficients of H are small
- On average : only the last few columns are large
\rightsquigarrow Compute H^{\prime} close to H but with small determinant

Computing modulo the determinant

- Pessimistic estimate on the arithmetic size
- d large but most coefficients of H are small
- On average : only the last few columns are large
\rightsquigarrow Compute H^{\prime} close to H but with small determinant
[Micciancio \& Warinschi 01]

$$
\begin{gathered}
A=\left[\begin{array}{cc}
B & b \\
c^{T} & a_{n-1, n} \\
d^{T} & a_{n, n}
\end{array}\right] \\
d_{1}=\operatorname{det}\left(\left[\begin{array}{c}
B \\
c^{T}
\end{array}\right]\right), d_{2}=\operatorname{det}\left(\left[\begin{array}{c}
B \\
d^{T}
\end{array}\right]\right) \\
g=\operatorname{gcd}\left(d_{1}, d_{2}\right)=s d_{1}+t d_{2} \quad \text { Then }
\end{gathered}
$$

$$
\operatorname{det}\left(\left[\begin{array}{c}
B \\
s c^{T}+t d^{T}
\end{array}\right]\right)=g
$$

Micciancio \& Warinschi algorithm

Compute $d_{1}=\operatorname{det}\left(\left[\begin{array}{c}B \\ c^{T}\end{array}\right]\right), d_{2}=\operatorname{det}\left(\left[\begin{array}{c}B \\ d^{T}\end{array}\right]\right)$
\triangleright Double Det
$(g, s, t)=\operatorname{xgcd}\left(d_{1}, d_{2}\right)$
Compute H_{1} the HNF of $\left[\begin{array}{c}B \\ s c^{T}+t d^{T}\end{array}\right] \bmod g \quad \triangleright$ Modular HNF
Recover H_{2} the HNF of $\left[\begin{array}{cc}B & b \\ s c^{T}+t d^{T} & s a_{n-1, n}+t a_{n, n}\end{array}\right] \quad \triangleright$ AddCol
Recover H_{3} the HNF of $\left[\begin{array}{cc}B & b \\ c^{T} & a_{n-1, n} \\ d^{T} & a_{n, n}\end{array}\right] \quad \triangleright$ AddRow

Micciancio \& Warinschi algorithm

Compute $d_{1}=\operatorname{det}\left(\left[\begin{array}{c}B \\ c^{T}\end{array}\right]\right), d_{2}=\operatorname{det}\left(\left[\begin{array}{c}B \\ d^{T}\end{array}\right]\right)$
\triangleright Double Det $(g, s, t)=\operatorname{xgcd}\left(d_{1}, d_{2}\right)$
Compute H_{1} the HNF of $\left[\begin{array}{c}B \\ s c^{T}+t d^{T}\end{array}\right] \bmod g \quad \triangleright$ Modular HNF
Recover H_{2} the HNF of $\left[\begin{array}{cc}B & b \\ s c^{T}+t d^{T} & s a_{n-1, n}+t a_{n, n}\end{array}\right] \quad \triangleright$ AddCol
Recover H_{3} the HNF of $\left[\begin{array}{cc}B & b \\ c^{T} & a_{n-1, n} \\ d^{T} & a_{n, n}\end{array}\right] \quad \triangleright$ AddRow

Double Determinant

First approach: $\mathrm{LU} \bmod p_{1}, \ldots, p_{k}+$ CRT

- Only one elimination for the $n-2$ first rows
- 2 updates for the last rows (triangular back substitution)
- k large such that $\prod_{i=1}^{k} p_{i}>n^{n} \log \|A\|^{n / 2}$

Double Determinant

First approach: $\mathrm{LU} \bmod p_{1}, \ldots, p_{k}+$ CRT

- Only one elimination for the $n-2$ first rows
- 2 updates for the last rows (triangular back substitution)
- k large such that $\prod_{i=1}^{k} p_{i}>n^{n} \log \|A\|^{n / 2}$

Second approach: [Abbott Bronstein Mulders 99]

- Solve $A x=b$.
- $\delta=\operatorname{lcm}\left(q_{1}, \ldots, q_{n}\right)$ s.t. $x_{i}=p_{i} / q_{i}$

Then δ is a large divisor of $D=\operatorname{det} A$.

- Compute D / δ by LU $\bmod p_{1}, \ldots, p_{k}+$ CRT
- k small, such that $\prod_{i=1}^{k} p_{i}>n^{n} \log \|A\|^{n / 2} / \delta$

Double Determinant: improved

Property

Let $x=\left[x_{1}, \ldots, x_{n}\right]$ be the solution of $[A \mid c] x=d$. Then
$y=\left[-\frac{x_{1}}{x_{n}}, \ldots,-\frac{x_{n-1}}{x_{n}}, \frac{1}{x_{n}}\right]$ is the solution of $[A \mid d] y=c$.

- 1 system solve
- 1 LU for each p_{i}
$\rightsquigarrow d_{1}, d_{2}$ computed at about the cost of 1 déterminant

AddCol

Problem

Find a vector e such that

$$
\begin{aligned}
e & =U\left[\begin{array}{c}
b \\
s a_{n-1, n}+t a_{n, n}
\end{array}\right] \\
& =H_{1}\left[\begin{array}{c}
B \\
s c^{T}+t d^{T}
\end{array}\right]^{-1}\left[\begin{array}{c}
b \\
s a_{n-1, n}+t a_{n, n}
\end{array}\right]
\end{aligned}
$$

\rightsquigarrow Solve a system.

- $n-1$ first rows are small
- last row is large

AddCol

Idea:

replace the last row by a random small one w^{T}.

$$
\left[\begin{array}{c}
B \\
w^{T}
\end{array}\right] y=\left[\begin{array}{c}
b \\
a_{n-1, n-1}
\end{array}\right]
$$

Let $\{k\}$ be a basis of the kernel of B. Then

$$
x=y+\alpha k .
$$

where

$$
\alpha=\frac{a_{n-1, n-1}-\left(s c^{T}+t d^{T}\right) \cdot y}{\left(s c^{T}+t d^{T}\right) \cdot k}
$$

\rightsquigarrow limits the expensive arithmetic to a few dot products

Computing the Frobenius normal form

Definition

Unique $F=U^{-1} A U=\operatorname{Diag}\left(C_{f_{0}}, \ldots, C_{f_{k}}\right)$ with $f_{k}\left|f_{k-1}\right| \ldots \mid f_{0}$.

Computing the Frobenius normal form

[P. \& Storjohann 07]

Computing the Frobenius normal form

[P. \& Storjohann 07]

Computing the Frobenius normal form

[P. \& Storjohann 07]

Computing the Frobenius normal form

[P. \& Storjohann 07]

Computing the Frobenius normal form

[P. \& Storjohann 07]

- From k to $k+1$-shifted in $O\left(k\left(\frac{n}{k}\right)^{\omega}\right)$
- Compute iteratively from a 1 -shifted form
- Invariant factors appear by increasing degree
- Until the Hessenberg polycyclic form

$$
n^{\omega} \sum_{k=1}^{n}\left(\frac{1}{k}\right)^{\omega-1} \leq \zeta(\omega-1) n^{\omega}=O\left(n^{\omega}\right)
$$

Computing the Frobenius normal form

[P. \& Storjohann 07]

Hessenberg polycyclic:

- From k to $k+1$-shifted in $O\left(k\left(\frac{n}{k}\right)^{\omega}\right)$
- Compute iteratively from a 1 -shifted form
- Invariant factors appear by increasing degree
- Until the Hessenberg polycyclic form
$n^{\omega} \sum_{k=1}^{n}\left(\frac{1}{k}\right)^{\omega-1} \leq \zeta(\omega-1) n^{\omega}=O\left(n^{\omega}\right)$
- Generalized to the Frobenius form as well
- Transformation matrix in $O\left(n^{\omega} \log \log n\right)$

A new type size dimension trade-off

A new type size dimension trade-off

Keller-Gehrig 2

dimension $=\frac{n}{2^{i}}$
degree $=2^{i}$

A new type size dimension trade-off

Keller-Gehrig 2

dimension $=\frac{n}{2^{i}}$
degree $=2^{i}$

New algorithm

Outline

(1) Choosing the underlying arithmetic

- Using boolean arithmetic
- Using machine word arithmetic
- Larger field sizes
(2) Reductions and building blocks
- In dense linear algebra
- In blackbox linear algebra
(3) Size dimension trade-offs
- Hermite normal form
- Frobenius normal form
(4) Parallel exact linear algebra
- Ingredients for the parallelization
- Parallel dense linear algebra mod p

Parallelization

Parallel numerical linear algebra

- cost invariant wrt. splitting
$\triangleright O\left(n^{3}\right)$
\rightsquigarrow fine grain
\rightsquigarrow block iterative algorithms
- regular task load
- Numerical stability constraints

Parallelization

Parallel numerical linear algebra

- cost invariant wrt. splitting
$\triangleright O\left(n^{3}\right)$
\rightsquigarrow fine grain
\rightsquigarrow block iterative algorithms
- regular task load
- Numerical stability constraints

Exact linear algebra specificities

- cost affected by the splitting
$\triangleright O\left(n^{\omega}\right)$ for $\omega<3$
\triangleright modular reductions
\leadsto coarse grain
\rightsquigarrow recursive algorithms
- rank deficiencies \rightsquigarrow unbalanced task loads

Ingredients for the parallelization

Criteria

- good performances
- portability across architectures
- abstraction for simplicity

Challenging key point: scheduling as a plugin
Program: only describes where the parallelism lies
Runtime: scheduling \& mapping, depending on the context of execution

3 main models:
(1) Parallel loop [data parallelism]
(2) Fork-Join (independent tasks) [task parallelism]
(3) Dependent tasks with data flow dependencies [task parallelism]

Data Parallelism

```
OMP
for (int step = 0; step < 2; ++step){
#pragma omp parallel for
    for (int i = 0; i < count; ++i)
    A[i] = (B[i+1] + B[i-1] + 2.0*B[i])*0.25;
}
```


Limitation: very un-efficient with recursive parallel regions

- Limited to iterative algorithms
- No composition of routines

Task parallelism with fork-Join

- Task based program: spawn + sync
- Especially suited for recursive programs

```
OMP (since v3)
void fibonacci(long* result, long n) {
    if (n < 2)
        *result = n;
    else {
        long x,y;
#pragma omp task
    fibonacci( &x, n-1 );
    fibonacci( &y, n-2 );
#pragma omp taskwait
    *result = x + y;
    }
}
```


Tasks with dataflow dependencies

- Task based model avoiding synchronizations
- Infer synchronizations from the read/write specifications
\triangleright A task is ready for execution when all its inputs variables are ready
\triangleright A variable is ready when it has been written
- Recently supported: Athapascan [96], Kaapi [06], StarSs [07], StarPU [08], Quark [10], OMP since v4 [14]...

Illustration: Cholesky factorization

```
void Cholesky( double* A, int N, size_t NB ) {
    for (size_t k=0; k<N; k +=NB)
    {
    clapack_dpotrf( CblasRowMajor, CblasLower, NB, &A[k*N+k],N );
    for (size_t m=k+NB; m<N; m += NB)
    {
            cblas_dtrsm ( CblasRowMajor, CblasLeft, CblasLower, CblasNoTrans, CblasUnit,
                NB, NB, 1., &A[k*N+k], N, &A[m*N+k], N );
    }
    for (size_t m=k+NB; m<N; m += NB)
    {
            cblas_dsyrk ( CblasRowMajor, CblasLower, CblasNoTrans,
                NB,NB, -1.0, &A[m*N+k], N, 1.0, &A[m*N+m],N );
            for (size_t n=k+NB; n<m; n += NB)
            {
                cblas_dgemm ( CblasRowMajor, CblasNoTrans, CblasTrans,
                NB, NB, NB, -1.0, &A[m*N+k], N, &A[n*N+k],N, 1.0, &A[m*N+n],N );
            }
    }
    }
}
```


Illustration: Cholesky factorization

```
void Cholesky( double* A, int N, size_t NB ) {
#pragma omp parallel
#pragma omp single nowait
    for (size_t k=0; k < N; k += NB)
    {
        clapack_dpotrf( CblasRowMajor, CblasLower, NB, &A[k*N+k], N );
        for (size_t m=k+ NB; m < N; m += NB)
        {
#pragma omp task firstprivate(k, m) shared(A)
            cblas_dtrsm ( CblasRowMajor, CblasLeft, CblasLower, CblasNoTrans, CblasUnit,
            NB, NB, 1., &A[k*N+k],N, &A[m*N+k],N );
    }
#pragma omp taskwait // Barrier: no concurrency with next tasks
    for (size_t m=k+ NB; m < N; m +=NB)
    {
#pragma omp task firstprivate(k, m) shared(A)
    cblas_dsyrk ( CblasRowMajor, CblasLower, CblasNoTrans,
        NB, NB, -1.0, &A[m*N+k], N, 1.0, &A[m*N+m], N );
        for (size_t n=k+NB; n < m; n += NB)
        {
#pragma omp task firstprivate(k, m) shared(A)
        cblas_dgemm ( CblasRowMajor, CblasNoTrans, CblasTrans,
                        NB, NB, NB, -1.0, &A[m*N+k], N, &A[n*N+k], N, 1.0, &A[m*N+n],N );
        }
        }
#pragma omp taskwait // Barrier: no concurrency with tasks at iteration k+1
}
```


SYNC.

Illustration: Cholesky factorization

```
void Cholesky( double* A, int N, size_t NB ){
#pragma kaapi parallel
    for (size_t k=0; k<N; k += NB)
    {
#pragma kaapi task readwrite(&A[k*N+k]{Id=N; [NB][NB]})
    clapack_dpotrf( CblasRowMajor, CblasLower, NB, &A[k*N+k], N );
    for (size_t m=k+ NB; m<N; m +=NB)
    {
#pragma kaapi task read(&A[k*N+k]{Id=N;[NB][NB]}) readwrite(&A[m*N+k]{Id=N; [NB][NB]})
        cblas_dtrsm ( CblasRowMajor, CblasLeft, CblasLower, CblasNoTrans, CblasUnit,
            NB,NB, 1., &A[k*N+k],N, &A[m*N+k],N );
    }
    for (size_t m=k+ NB; m < N; m += NB)
    {
#pragma kaapi task read(&A[m*N+k]{Id=N;[NB][NB]}) readwrite(&A[m*N+m]{Id=N; [NB][NB]})
    cblas_dsyrk ( CblasRowMajor, CblasLower, CblasNoTrans,
            NB,NB, -1.0, &A[m*N+k], N, 1.0, &A[m*N+m], N );
        for (size.t n=k+NB; n < m; n += NB)
    {
#pragma kaapi task read(&A[m*N+k]{Id=N; [NB][NB]}, &A[n*N+k]{Id=N; [NB][NB]})\
                                    readwrite(&A[m*N+n]{Id=N; [NB][NB]})
            cblas_dgemm ( CblasRowMajor, CblasNoTrans, CblasTrans,
                NB,NB,NB, -1.0, &A[m*N+k],N, &A[n*N+k],N, 1.0, &A[m*N+n],N );
        }
        }
    }
    / Implicit barrier only at the end of Kaapi parallel region
}
```


Parallel matrix multiplication

[Dumas, Gautier, P. \& Sultan 14]

Parallel matrix multiplication

[Dumas, Gautier, P. \& Sultan 14]

Parallel matrix multiplication

[Dumas, Gautier, P. \& Sultan 14]

Gaussian elimination

Slab iterative LAPACK

Tile iterative PLASMA

Tile recursive FFLAS-FFPACK

Gaussian elimination

Tile recursive FFLAS-FFPACK

- Prefer recursive algorithms

Gaussian elimination

- Prefer recursive algorithms
- Better data locality

Full rank Gaussian elimination

[Dumas, Gautier, P. and Sultan 14] Comparing numerical efficiency (no modulo)

Full rank Gaussian elimination

[Dumas, Gautier, P. and Sultan 14] Comparing numerical efficiency (no modulo)

Full rank Gaussian elimination

[Dumas, Gautier, P. and Sultan 14] Comparing numerical efficiency (no modulo)

Full rank Gaussian elimination

[Dumas, Gautier, P. and Sultan 14] Over the finite field $\mathbb{Z} / 131071 \mathbb{Z}$

Full rank Gaussian elimination

[Dumas, Gautier, P. and Sultan 14] Over the finite field $\mathbb{Z} / 131071 \mathbb{Z}$

Conclusion

Design framework for high performance exact linear algebra
Asymptotic reduction > algorithm tuning > building block implementation

- So far, floating point arithmetic delivers best speed

Conclusion

Design framework for high performance exact linear algebra
Asymptotic reduction > algorithm tuning > building block implementation

- So far, floating point arithmetic delivers best speed
- Medium size arithmetic: RNS
\rightsquigarrow harnesses floating point efficiency
\rightsquigarrow embarrassingly easy parallelization (and fault tolerance)

Conclusion

Design framework for high performance exact linear algebra
Asymptotic reduction > algorithm tuning > building block implementation

- So far, floating point arithmetic delivers best speed
- Medium size arithmetic: RNS
\rightsquigarrow harnesses floating point efficiency
\rightsquigarrow embarrassingly easy parallelization (and fault tolerance)
- Favor tiled recursive algorithms \rightsquigarrow architecture oblivious vs aware algorithms [Gustavson 07]

Conclusion

Design framework for high performance exact linear algebra
Asymptotic reduction > algorithm tuning > building block implementation

- So far, floating point arithmetic delivers best speed
- Medium size arithmetic: RNS
\rightsquigarrow harnesses floating point efficiency
\rightsquigarrow embarrassingly easy parallelization (and fault tolerance)
- Favor tiled recursive algorithms \rightsquigarrow architecture oblivious vs aware algorithms [Gustavson 07]
- New pivoting strategies revealing all rank profile informations \rightsquigarrow tournament pivoting? [Demmel, Grigori and Xiang 11]

Conclusion

Design framework for high performance exact linear algebra

Asymptotic reduction $>$ algorithm tuning $>$ building block implementation

- So far, floating point arithmetic delivers best speed
- Medium size arithmetic: RNS
\rightsquigarrow harnesses floating point efficiency
\rightsquigarrow embarrassingly easy parallelization (and fault tolerance)
- Favor tiled recursive algorithms \rightsquigarrow architecture oblivious vs aware algorithms [Gustavson 07]
- New pivoting strategies revealing all rank profile informations \rightsquigarrow tournament pivoting? [Demmel, Grigori and Xiang 11]
- Seek size-dimension trade-offs, even heuristic ones,

Conclusion

Design framework for high performance exact linear algebra

Asymptotic reduction > algorithm tuning > building block implementation

- So far, floating point arithmetic delivers best speed
- Medium size arithmetic: RNS
\rightsquigarrow harnesses floating point efficiency
\rightsquigarrow embarrassingly easy parallelization (and fault tolerance)
- Favor tiled recursive algorithms \rightsquigarrow architecture oblivious vs aware algorithms [Gustavson 07]
- New pivoting strategies revealing all rank profile informations \rightsquigarrow tournament pivoting? [Demmel, Grigori and Xiang 11]
- Seek size-dimension trade-offs, even heuristic ones,
- Recursive tasks and coarse grain parallelization \rightsquigarrow Light weight task workstealing management required \rightsquigarrow Need for an improved recursive dataflow scheduling

Perspectives

Large scale distributed exact linear algebra

- reducing communications [Demmel, Grigori and Xiang 11]
- sparse and hybrid [Faugère and Lachartre 10]

Perspectives

Large scale distributed exact linear algebra

- reducing communications [Demmel, Grigori and Xiang 11]
- sparse and hybrid [Faugère and Lachartre 10]

Structured linear algebra

- A lot of action recently [Jeannerod Schost 08], [Chowdhury \& AI. 15]
- Combined with recent advances in linear algebra over $K[X]$
- Applications to list decoding

Perspectives

Large scale distributed exact linear algebra

- reducing communications [Demmel, Grigori and Xiang 11]
- sparse and hybrid [Faugère and Lachartre 10]

Structured linear algebra

- A lot of action recently [Jeannerod Schost 08], [Chowdhury \& AI. 15]
- Combined with recent advances in linear algebra over $K[X]$
- Applications to list decoding

Symbolic-numeric computation

- High precision floating point linear algebra via exact rational arithmetic and RNS

Perspectives

Large scale distributed exact linear algebra

- reducing communications [Demmel, Grigori and Xiang 11]
- sparse and hybrid [Faugère and Lachartre 10]

Structured linear algebra

- A lot of action recently [Jeannerod Schost 08], [Chowdhury \& AI. 15]
- Combined with recent advances in linear algebra over $K[X]$
- Applications to list decoding

Symbolic-numeric computation

- High precision floating point linear algebra via exact rational arithmetic and RNS

Thank you

