Exact Linear Algebra Algorithmic: Theory and Practice ISSAC'15 Tutorial

Clément Pernet

Université Grenoble Alpes, Inria, LIP-AriC

July 6, 2015

Matrices can be

Dense: store all coefficients

Sparse: store the non-zero coefficients only

Black-box: no access to the storage, only apply to a vector

Matrices can be

Dense: store all coefficients

Sparse: store the non-zero coefficients only

Black-box: no access to the storage, only apply to a vector

Coefficient domains:

Word size: • integers with a priori bounds

• $\mathbb{Z}/p\mathbb{Z}$ for p of ≈ 32 bits

Multi-precision: $\mathbb{Z}/p\mathbb{Z}$ for p of $\approx 100, 200, 1000, 2000, \ldots$ bits Arbitrary precision: \mathbb{Z}, \mathbb{Q} Polynomials: K[X] for K any of the above

Matrices can be

Dense: store all coefficients

Sparse: store the non-zero coefficients only

Black-box: no access to the storage, only apply to a vector

Coefficient domains:

Word size: • integers with a priori bounds

• $\mathbb{Z}/p\mathbb{Z}$ for p of ≈ 32 bits

Multi-precision: $\mathbb{Z}/p\mathbb{Z}$ for p of $\approx 100, 200, 1000, 2000, \dots$ bits Arbitrary precision: \mathbb{Z}, \mathbb{Q}

Polynomials: K[X] for K any of the above

Several implemenations for the same domain: better fits FFT, LinAlg, etc

Matrices can be

Dense: store all coefficients

Sparse: store the non-zero coefficients only

Black-box: no access to the storage, only apply to a vector

Coefficient domains:

Word size: • integers with a priori bounds

• $\mathbb{Z}/p\mathbb{Z}$ for p of ≈ 32 bits

Multi-precision: $\mathbb{Z}/p\mathbb{Z}$ for p of $\approx 100, 200, 1000, 2000, \dots$ bits Arbitrary precision: \mathbb{Z}, \mathbb{Q}

Polynomials: K[X] for K any of the above

Several implemenations for the same domain: better fits FFT, LinAlg, etc

Need to structure the design.

Motivations

Comp. Number Theory:	CharPoly, LinSys, Echelon, over $\mathbb{Z}, \mathbb{Q}, \mathbb{Z}/p\mathbb{Z}$, Dense
Graph Theory:	MatMul, CharPoly, Det, over \mathbb{Z} , Sparse
Discrete log.:	LinSys, over $\mathbb{Z}/p\mathbb{Z},~p\approx 120$ bits, Sparse
Integer Factorization:	NullSpace, over $\mathbb{Z}/2\mathbb{Z}$, Sparse
Algebraic Attacks:	Echelon, LinSys, over $\mathbb{Z}/p\mathbb{Z}$, $p\approx 20$ bits, Sparse & Dense
List decoding of RS cod	es: Lattice reduction, over $GF(q)[X]$, Structured

Motivations

Comp. Number Theory:	CharPoly, LinSys, Echelon, over $\mathbb{Z}, \mathbb{Q}, \mathbb{Z}/p\mathbb{Z}$, Dense
Graph Theory:	MatMul, CharPoly, Det, over \mathbb{Z} , Sparse
Discrete log.:	LinSys, over $\mathbb{Z}/p\mathbb{Z}$, $ppprox 120$ bits, Sparse
Integer Factorization:	NullSpace, over $\mathbb{Z}/2\mathbb{Z}$, Sparse
Algebraic Attacks:	Echelon, LinSys, over $\mathbb{Z}/p\mathbb{Z}$, $p\approx 20$ bits, Sparse & Dense
List decoding of RS cod	es: Lattice reduction, over $GF(q)[X]$, Structured

Need for high performance.

The scope of this presentation:

- not an exhaustive overview on linear algebra algorithmic and complexity improvements
- a few guidelines, for the use and design of exact linear algebra in practice
- bridging the theoretical algorithmic development and practical efficiency concerns

Outline

Choosing the underlying arithmetic

- Using boolean arithmetic
- Using machine word arithmetic
- Larger field sizes

Reductions and building blocks

- In dense linear algebra
- In blackbox linear algebra
- Size dimension trade-offs
 - Hermite normal form
 - Frobenius normal form
 - Parallel exact linear algebra
 - Ingredients for the parallelization
 - Parallel dense linear algebra mod p

Outline

- Using boolean arithmetic
- Using machine word arithmetic
- Larger field sizes

Reductions and building blocks

- In dense linear algebra
- In blackbox linear algebra
- 3 Size dimension trade-offs
 - Hermite normal form
 - Frobenius normal form
- 4) Parallel exact linear algebra
 - Ingredients for the parallelization
 - Parallel dense linear algebra mod p

Achieving high practical efficiency

Most of linear algebra operations boil down to (a lot of)

 $\texttt{y} \leftarrow \texttt{y} \pm \texttt{a} * \texttt{b}$

- dot-product
- matrix-matrix multiplication
- rank 1 update in Gaussian elimination
- Schur complements, ...

Efficiency relies on

- fast arithmetic
- fast memory accesses

Here: focus on dense linear algebra

Many base fields/rings to support

1 bit
2-3 bits
4-26 bits
> 32 bits
> 32 bits

Many base fields/rings to support

\mathbb{Z}_2	1 bit
$\mathbb{Z}_{3,5,7}$	2-3 bits
\mathbb{Z}_p	4-26 bits
\mathbb{Z},\mathbb{Q}	> 32 bits
\mathbb{Z}_p	> 32 bits

Available CPU arithmetic

- boolean
- integer (fixed size)
- floating point
- .. and their vectorization

Many base fields/rings to support

\mathbb{Z}_2 1 bit	→ bit-packing
$\mathbb{Z}_{3,5,7}$ 2-3 bits	s → bit-slicing, bit-packing
\mathbb{Z}_p 4-26 bi	ts → CPU arithmetic
\mathbb{Z},\mathbb{Q} > 32 b	its ~> multiprec. ints, big ints,CRT, lifting
\mathbb{Z}_p $>$ 32 b	its ~> multiprec. ints, big ints, CRT

Available CPU arithmetic

- boolean
- integer (fixed size)
- floating point
- .. and their vectorization

Many base fields/rings to support

\mathbb{Z}_2	1 bit	↔ bit-packing
$\mathbb{Z}_{3,5,7}$	2-3 bits	→ bit-slicing, bit-packing
\mathbb{Z}_p	4-26 bits	→ CPU arithmetic
\mathbb{Z},\mathbb{Q}	> 32 bits	→ multiprec. ints, big ints,CRT, lifting
\mathbb{Z}_p	> 32 bits	→ multiprec. ints, big ints, CRT
$GF(p^k) \equiv \mathbb{Z}_p[X]/(Q)$		\rightsquigarrow Polynomial, Kronecker, Zech log,

Available CPU arithmetic

- boolean
- integer (fixed size)
- floating point
- .. and their vectorization

Dense linear algebra over \mathbb{Z}_2 : bit-packing

$$\mathtt{uint64_t} \equiv (\mathbb{Z}_2)^{64} \rightsquigarrow$$

- $\hat{}$: bit-wise XOR, (+ mod 2)
- & : bit-wise AND, (* mod 2)

dot-product (a,b)

```
uint64_t t = 0;
for (int k=0; k < N/64; ++k)
    t ^= a[k] & b[k];
c = parity(t)
```

parity(x)

```
if (size(x) == 1)
    return x;
else return parity (High(x) ^ Low(x))
```

 \rightsquigarrow Can be parallelized on 64 instances.

Tabulation:

- avoid computing parities
- balance computation vs communication
- (slight) complexity improvement possible

Tabulation:

- avoid computing parities
- balance computation vs communication
- (slight) complexity improvement possible

The Four Russian method [Arlazarov, Dinic, Kronrod, Faradzev 70]

- compute all 2^k linear combinations of k rows of B.
 Gray code: each new line costs 1 vector add (vs k/2)
- e multiply chunks of length k of A by table look-up

Tabulation:

- avoid computing parities
- balance computation vs communication
- (slight) complexity improvement possible

The Four Russian method [Arlazarov, Dinic, Kronrod, Faradzev 70]

- compute all 2^k linear combinations of k rows of B. Gray code: each new line costs 1 vector add (vs k/2)
- 2 multiply chunks of length kof A by table look-up

• For $k = \log n \rightsquigarrow O(n^3 / \log n)$.

Exact Linear Algebra Algorithmic

Dense linear algebra over \mathbb{Z}_2

The M4RI library [Albrecht Bard Hart 10]

- bit-packing
- Method of the Four Russians
- SIMD vectorization of boolean instructions (128 bits registers)
- Cache optimization
- Strassen's $O(n^{2.81})$ algorithm

n	7000	14 000	28 000
SIMD bool arithmetic	2.109s	15.383s	111.82
SIMD + 4 Russians	0.256s	2.829s	29.28s
SIMD + 4 Russians + Strassen	0.257s	2.001s	15.73

Table : Matrix product $n \times n$ by $n \times n$, on an i5 SandyBridge 2.6Ghz.

Dense linear algebra over \mathbb{Z}_3 , \mathbb{Z}_5 [Boothby & Bradshaw 09] $\mathbb{Z}_3 = \{0, 1, -1\} = \{00, 01, 10\}$

 $\mathbb{Z}_3 = \{0,1,-1\} \quad = \{\texttt{00},\texttt{01},\texttt{10}\} \quad \rightsquigarrow \texttt{add/sub in 7 bool ops}$

$$\begin{split} \mathbb{Z}_3 = \{0,1,-1\} &= \{00,01,10\} & \rightsquigarrow \text{ add/sub in 7 bool ops} \\ &= \{00,10,11\} & \rightsquigarrow \text{ add/sub in 6 bool ops} \end{split}$$

$$\begin{split} \mathbb{Z}_3 = \{0,1,-1\} &= \{00,01,10\} & \rightsquigarrow \text{ add/sub in 7 bool ops} \\ &= \{00,10,11\} & \rightsquigarrow \text{ add/sub in 6 bool ops} \end{split}$$

Bit-slicing

$$\begin{array}{l} (-1,0,1,0,1,-1,-1,0) \in \mathbb{Z}_3^8 \rightarrow (\texttt{11},\texttt{00},\texttt{10},\texttt{00},\texttt{10},\texttt{11},\texttt{00}) \\ \\ \texttt{Stored as 2 words} \quad \begin{array}{l} (\texttt{1,0,1,0,1,1,0}) \\ (\texttt{1,0,0,0,0,1,0}) \end{array}$$

$$\begin{split} \mathbb{Z}_3 = \{0,1,-1\} &= \{00,01,10\} & \rightsquigarrow \text{ add/sub in 7 bool ops} \\ &= \{00,10,11\} & \rightsquigarrow \text{ add/sub in 6 bool ops} \end{split}$$

Bit-slicing

$$\begin{array}{l} (-1,0,1,0,1,-1,-1,0)\in\mathbb{Z}_3^8\to(\texttt{11},\texttt{00},\texttt{10},\texttt{00},\texttt{10},\texttt{11},\texttt{00})\\ \texttt{Stored as 2 words} & (\texttt{1,0,1,0,1,1,0})\\ & (\texttt{1,0,0,0,0,1,0}) \end{array}$$

 $\rightsquigarrow \vec{y} \leftarrow \vec{y} + x\vec{b}$ for $x \in \mathbb{Z}_3, \vec{y}, \vec{b} \in \mathbb{Z}_3^{64}$ in 6 boolean word ops.

$$\begin{split} \mathbb{Z}_3 = \{0,1,-1\} &= \{00,01,10\} & \rightsquigarrow \text{ add/sub in 7 bool ops} \\ &= \{00,10,11\} & \rightsquigarrow \text{ add/sub in 6 bool ops} \end{split}$$

Bit-slicing

$$\begin{array}{l} (-1,0,1,0,1,-1,-1,0)\in \mathbb{Z}_3^8 \to (\texttt{11},\texttt{00},\texttt{10},\texttt{00},\texttt{10},\texttt{11},\texttt{00})\\ \texttt{Stored as 2 words} \quad \begin{array}{l} (\texttt{1,0,1,0,1,1,0})\\ (\texttt{1,0,0,0,0,1,0}) \end{array}$$

 $\rightsquigarrow \vec{y} \leftarrow \vec{y} + x\vec{b}$ for $x \in \mathbb{Z}_3, \vec{y}, \vec{b} \in \mathbb{Z}_3^{64}$ in 6 boolean word ops.

Recipe for \mathbb{Z}_5

- Use redundant representations on 3 bits + bit-slicing
- integer add + bool operations
- ▶ Pseudo-reduction mod 5 (4 \rightarrow 3 bits) in 8 bool ops found by computer assisted search.

Delayed modular reductions

- Compute using integer arithmetic
- **2** Reduce modulo p only when necessary

Delayed modular reductions

- Compute using integer arithmetic
- **2** Reduce modulo p only when necessary

When to reduce ?

Bound the values of all intermediate computations.

A priori:

Representation of \mathbb{Z}_p	$\{0 \dots p-1\}$	$\left\{-\frac{p-1}{2}\dots\frac{p-1}{2}\right\}$
Scalar product, Classic MatMul	$n(p-1)^2$	$n\left(\frac{p-1}{2}\right)^2$

Delayed modular reductions

- Compute using integer arithmetic
- **2** Reduce modulo p only when necessary

When to reduce ?

Bound the values of all intermediate computations.

A priori:

Representation of \mathbb{Z}_p	$\{0 \dots p-1\}$	$\left\{-\frac{p-1}{2}\dots\frac{p-1}{2}\right\}$
Scalar product, Classic MatMul	$n(p-1)^2$	$n\left(\frac{p-1}{2}\right)^2$
Strassen-Winograd MatMul (ℓ rec. levels)	$\left(\frac{1+3^{\ell}}{2}\right)^2 \lfloor \frac{n}{2^{\ell}} \rfloor \left(p-1\right)^2$	$9^{\ell} \lfloor \frac{n}{2^{\ell}} \rfloor \left(\frac{p-1}{2} \right)^2$

Delayed modular reductions

- Compute using integer arithmetic
- $\ensuremath{ extsf{2}}$ Reduce modulo p only when necessary

When to reduce ?

Bound the values of all intermediate computations.

► A priori:

Representation of \mathbb{Z}_p	$\{0 \dots p-1\}$	$\left\{-\frac{p-1}{2}\dots\frac{p-1}{2}\right\}$
Scalar product, Classic MatMul	$n(p-1)^2$	$n\left(\frac{p-1}{2}\right)^2$
Strassen-Winograd MatMul (ℓ rec. levels)	$\left(\frac{1+3^{\ell}}{2}\right)^2 \lfloor \frac{n}{2^{\ell}} \rfloor \left(p-1\right)^2$	$9^{\ell} \lfloor \frac{n}{2^{\ell}} \rfloor \left(\frac{p-1}{2} \right)^2$

Maintain locally a bounding interval on all matrices computed

How to compute with (machine word size) integers efficiently?

use CPU's integer arithmetic units

y += a * b: correct if $|ab + y| < 2^{63} \rightsquigarrow |a|, |b| < 2^{31}$

How to compute with (machine word size) integers efficiently?

use CPU's integer arithmetic units

y += a * b: correct if $|ab + y| < 2^{63} \rightsquigarrow |a|, |b| < 2^{31}$ movq (%rax,%rdx,8), %rax imulq -56(%rbp), %rax addq %rax,%rcx movq -80(%rbp), %rax

-80(%rbp), %rax

How to compute with (machine word size) integers efficiently?

() use CPU's **integer arithmetic units** + vectorization

y += a * b: correct if
$$|ab + y| < 2^{63} \rightsquigarrow |a|, |b| < 2^{31}$$

movq (%rax,%rdx,8), %rax vpmuludq %xmm3, %xmm0,%xmm0
addq %rax,%rcx vpaddq %xmm2,%xmm0,%xmm0

vpsllq

C. Pernet

movq

\$32,%xmm0,%xmm0

How to compute with (machine word size) integers efficiently?

use CPU's integer arithmetic units + vectorization

② use CPU's floating point units y += a * b: correct if $|ab + y| < 2^{53} \rightsquigarrow |a|, |b| < 2^{26}$

How to compute with (machine word size) integers efficiently?

use CPU's integer arithmetic units + vectorization

y += a * b: correct if
$$|ab + y| < 2^{63} \rightsquigarrow |a|, |b| < 2^{31}$$

movq (%rax,%rdx,8), %rax vpmuludq %xmm3, %xmm0,%xmm0
addq %rax, %rcx vpaddq %xmm2,%xmm0,%xmm0
prune 20(%rbp) %ram vpsllq \$32,%xmm0,%xmm0

- movq -80(%rbp), %rax
- 2 use CPU's floating point units y += a * b: correct if $|ab + y| < 2^{53} \rightsquigarrow |a|, |b| < 2^{26}$ movsd (%rax,%rdx,8), %xmm0
 - mulsd -56(%rbp), %xmm0
 - addsd %xmm0, %xmm1 movq %xmm1, %rax

How to compute with (machine word size) integers efficiently?

use CPU's **integer arithmetic units** + vectorization

y += a	* b: correct if $ ab + y $	$< 2^{63} \rightsquigarrow a , a $	$ b < 2^{31}$
movq imulq addq movq	(%rax,%rdx,8), %rax -56(%rbp), %rax %rax, %rcx -80(%rbp), %rax	vpmuludq vpaddq vpsllq	%xmm3, %xmm0,%xmm0 %xmm2,%xmm0,%xmm0 \$32,%xmm0,%xmm0

use CPU's floating point units + vectorization

y += a * b: correct if $ ab+y < 2^{53} \rightsquigarrow a , b < 2^{26}$			
movsd	(%rax,%rdx,8), %xmmO	vinsertf128	<pre>\$0x1, 16(%rcx,%rax), %ymm0</pre>
mulsd	-56(%rbp), %xmm0	vmulpd	%ymm1, %ymm0, %ymm0
addsd	%xmmO, %xmm1	vaddpd	(%rsi,%rax),%ymm0, %ymm0
movq	%xmm1, %rax	vmovapd	%ymmO, (%rsi,%rax)
Exploiting in-core parallelism

Ingredients

Exploiting in-core parallelism

Ingredients SIMD: Single Instruction Multiple Data: 1 arith. unit acting on a vector of data $4 \times 64 = 256$ bits MMX 64 hits SSE 128bits x[1] 1 x[2] 1 x[3] AV/X 256 bits v[2] 1 v[3] AVX-512 512 bits x[0]+y[0] x[1]+y[1] x[2]+y[2] x[3]+y[3]Pipeline: amortize the latency of an operation when used repeatedly throughput of 1 op/ Cycle for all IF ID EX WB IF ID MEM WB arithmetic ops considered here IF MEM WE MEM WB

Exploiting in-core parallelism

Ingredients SIMD: Single Instruction Multiple Data: 1 arith. unit acting on a vector of data $4 \times 64 = 256$ bits MMX 64 hits SSE 128bits x[1] 1 x[2] 1 x[3] AV/X 256 bits AVX-512 512 bits x[0]+y[0] x[1]+y[1] x[2]+y[2] x[3]+y[3]Pipeline: amortize the latency of an operation when used repeatedly throughput of 1 op/ Cycle for all IF ID EX WB IF ID MEM WB arithmetic ops considered here IF MEM WB Execution Unit parallelism: multiple arith. units acting simulatneously on distinct registers

Intel Sandybridge micro-architecture

AMD Bulldozer micro-architecture

Intel Nehalem micro-architecture

Performs at every clock cycle:

	1	Floating	Pt.	Mul	×	2
--	---	----------	-----	-----	---	---

• 1 Floating Pt. Add \times 2

Or:

- ► 1 Integer Mul × 2
- ► 2 Integer Add × 2

		Register size	# Adders	# Multipliers	# FMA	# daxpy /Cycle	CPU F _{req.} (Ghz)	Speed of Light (Gfops)	Speed in practice (Gfops)	
Intel Haswell AVX2	INT FP	256 256	2	1	2	4 8	3.5 3.5	28 56		
Intel Sandybridge AVX1	INT FP									
AMD Bulldozer FMA4	INT FP									
Intel Nehalem SSE4	INT FP									
AMD K10 SSE4a Speed of light: CPU	AMD K10 INT SSE4a FP Speed of light: CPU freq × (# daxpy / Cycle) ×2									

		Register size	# Adders	# Multipliers	# FMA	# daxpy /Cycle	CPU F _{req.} (Ghz)	Speed of Light (Gfops)	Speed in practice (Gfops)
Intel Haswell AVX2	INT FP	256 256	2	1	2	4 8	3.5 3.5	28 56	23.3 49.2
Intel Sandybridge AVX1	INT FP								
AMD Bulldozer FMA4	INT FP								
Intel Nehalem SSE4	INT FP								
AMD K10 INT SSE4a FP Speed of light: CPU freq × (# daxpy / Cycle) ×2									

		Register size	# Adders	# Multipliers	# FMA	# daxpy /Cycle	CPU F _{req.} (Ghz)	Speed of Light (Gfops)	Speed in practice (Gfops)
Intel Haswell AVX2	INT FP	256 256	2	1	2	4 8	3.5 3.5	28 56	23.3 49.2
Intel Sandybridge AVX1	INT FP	128 256	2 1	1 1		2 4	3.3 3.3	13.2 26.4	
AMD Bulldozer FMA4	INT FP								
Intel Nehalem SSE4	INT FP								
AMD K10 INT SSE4a FP Speed of light: CPU freq × (# daxpy / Cycle) ×2									

C. Pernet

Exact Linear Algebra Algorithmic

		Register size	# Adders	# Multipliers	# FMA	# daxpy /Cycle	CPU F _{req.} (Ghz)	Speed of Light (Gfops)	Speed in practice (Gfops)
Intel Haswell AVX2	INT FP	256 256	2	1	2	4 8	3.5 3.5	28 56	23.3 49.2
Intel Sandybridge AVX1	INT FP	128 256	2 1	1 1		2 4	3.3 3.3	13.2 26.4	12.1 24.6
AMD Bulldozer FMA4	INT FP								
Intel Nehalem SSE4	INT FP								
AMD K10 INT SSE4a FP Speed of light: CPU freq × (# daxpy / Cycle) ×2									

C. Pernet

Exact Linear Algebra Algorithmic

		Register size	# Adders	# Multipliers	# FMA	# daxpy /Cycle	CPU F _{req.} (Ghz)	Speed of Light (Gfops)	Speed in practice (Gfops)
Intel Haswell	INT	256	2	1		4	3.5	28	23.3
AVX2	FP	256			2	8	3.5	56	49.2
Intel Sandybridge	INT	128	2	1		2	3.3	13.2	12.1
AVX1	FP	256	1	1		4	3.3	26.4	24.6
AMD Bulldozer	INT	128	2	1		2	2.1	8.4	
FMA4	FP	128			2	4	2.1	16.8	
Intel Nehalem	INT								
SSE4	FP								
AMD K10	INT								
SSE4a	FP								
Speed of light: CPU	freq $ imes$	(#d	axpy /	Cycle) :	$\times 2$				

		Register size	# Adders	# Multipliers	# FMA	# daxpy /Cycle	CPU F _{req.} (Ghz)	Speed of Light (Gfops)	Speed in practice (Gfops)
Intel Haswell	INT	256	2	1		4	3.5	28	23.3
AVX2	FP	256			2	8	3.5	56	49.2
Intel Sandybridge	INT	128	2	1		2	3.3	13.2	12.1
AVX1	FP	256	1	1		4	3.3	26.4	24.6
AMD Bulldozer	INT	128	2	1		2	2.1	8.4	6.44
FMA4	FP	128			2	4	2.1	16.8	13.1
Intel Nehalem	INT								
SSE4	FP								
AMD K10	INT								
SSE4a	FP								
Speed of light: CPU	freq $ imes$	(#da	axpy /	Cycle) :	$\times 2$				

		Register size	# Adders	# Multipliers	# FMA	# daxpy /Cycle	CPU F _{req.} (Ghz)	Speed of Light (Gfops)	Speed in practice (Gfops)
Intel Haswell AVX2	INT FP	256 256	2	1	2	4 8	3.5 3.5	28 56	23.3 49.2
Intel Sandybridge AVX1	INT FP	128 256	2 1	1 1		2 4	3.3 3.3	13.2 26.4	12.1 24.6
AMD Bulldozer FMA4	INT FP	128 128	2	1	2	2 4	2.1 2.1	8.4 16.8	6.44 13.1
Intel Nehalem SSE4	INT FP	128 128	2 1	1 1		2 2	2.66 2.66	10.6 10.6	
AMD K10 SSE4a Speed of light: CPU	$_{\rm FP}^{\rm INT}$	(# da	axpy /	Cycle) :	$\times 2$				

		Register size	# Adders	# Multipliers	# FMA	# daxpy /Cycle	CPU F _{req.} (Ghz)	Speed of Light (Gfops)	Speed in practice (Gfops)
Intel Haswell AVX2	INT FP	256 256	2	1	2	4 8	3.5 3.5	28 56	23.3 49.2
					-	-			
Intel Sandybridge	INT	128	2	1		2	3.3	13.2	12.1
AVX1	FP	256	1	1		4	3.3	26.4	24.6
AMD Bulldozer	INT	128	2	1		2	2.1	8.4	6.44
FMA4	FP	128			2	4	2.1	16.8	13.1
Intel Nehalem	INT	128	2	1		2	2.66	10.6	4.47
SSE4	FP	128	1	1		2	2.66	10.6	9.6
AMD K10 SSE4a	INT FP	(Cuele)					
Speed of light: CPO freq × (# daxpy / Cycle) ×2									

		Register size	# Adders	# Multipliers	# FMA	# daxpy /Cycle	CPU F _{req.} (Ghz)	Speed of Light (Gfops)	Speed in practice (Gfops)
Intel Haswell	INT	256	2	1		4	3.5	28	23.3
AVX2	FP	256			2	8	3.5	56	49.2
Intel Sandybridge	INT	128	2	1		2	3.3	13.2	12.1
AVX1	FP	256	1	1		4	3.3	26.4	24.6
AMD Bulldozer	INT	128	2	1		2	2.1	8.4	6.44
FMA4	FP	128			2	4	2.1	16.8	13.1
Intel Nehalem	INT	128	2	1		2	2.66	10.6	4.47
SSE4	FP	128	1	1		2	2.66	10.6	9.6
AMD K10	INT	64	2	1		1	2.4	4.8	
SSE4a	FP	128	1	1		2	2.4	9.6	
Speed of light: CPU	l freq $ imes$	(# d	axpy /	Cycle)	$\times 2$				

		Register size	# Adders	# Multipliers	# FMA	# daxpy /Cycle	CPU F _{req.} (Ghz)	Speed of Light (Gfops)	Speed in practice (Gfops)
Intel Haswell	INT	256	2	1		4	3.5	28	23.3
AVX2	FP	256			2	8	3.5	56	49.2
Intel Sandybridge	INT	128	2	1		2	3.3	13.2	12.1
AVX1	FP	256	1	1		4	3.3	26.4	24.6
AMD Bulldozer	INT	128	2	1		2	2.1	8.4	6.44
FMA4	FP	128			2	4	2.1	16.8	13.1
Intel Nehalem	INT	128	2	1		2	2.66	10.6	4.47
SSE4	FP	128	1	1		2	2.66	10.6	9.6
AMD K10	INT	64	2	1		1	2.4	4.8	
SSE4a	FP	128	1	1		2	2.4	9.6	8.93
Speed of light: CPU	l freq $ imes$	(# da	axpy /	Cycle)	$\times 2$				

Computing over fixed size integers: ressources

Micro-architecture bible: Agner Fog's software optimization resources [www.agner.org/optimize]

Experiments:

Integer Packing

32 bits: half the precision twice the speed

double	double	double	double		
float float	float float	float float	float float		

Gfops	double	float	$int64_t$	$int32_t$
Intel SandyBridge	24.7	49.1	12.1	24.7
Intel Haswell	49.2	77.6	23.3	27.4
AMD Bulldozer	13.0	20.7	6.63	11.8

Computing over fixed size integers

SandyBridge i5-3320M@3.3Ghz. n = 2000.

Take home message

- Floating pt. arith. delivers the highest speed (except in corner cases)
- 32 bits twice as fast as 64 bits

Computing over fixed size integers

SandyBridge i5-3320M@3.3Ghz. n = 2000.

Take home message

- Floating pt. arith. delivers the highest speed (except in corner cases)
- 32 bits twice as fast as 64 bits
- best bit computation throughput for double precision floating points.

Larger finite fields: $\log_2 p \ge 32$

As before:

- Use adequate integer arithmetic
- 2 reduce modulo p only when necessary

Which integer arithmetic?

- big integers (GMP)
- In the size multiprecision (Givaro-RecInt)
- Residue Number Systems (Chinese Remainder theorem) vising moduli delivering optimum bitspeed

Larger finite fields: $\log_2 p \ge 32$

As before:

- Use adequate integer arithmetic
- 2 reduce modulo p only when necessary

Which integer arithmetic?

- big integers (GMP)
- Iixed size multiprecision (Givaro-RecInt)
- Residue Number Systems (Chinese Remainder theorem) vising moduli delivering optimum bitspeed

$\log_2 p$	50	100	150	
GMP	58.1s	94.6s	140s	n = 1000, on an Intel SandyBridge.
Recint	5./S	28.6s	837S	
RNS	0.785s	1.42s	1.88s	

In practice

In practice

In practice

Outline

Parallel dense linear algebra mod p

Reductions to building blocks

Huge number of algorithmic variants for a given computation in $O(n^3)$. Need to structure the design of set of routines :

- Focus tuning effort on a single routine
- Some operations deliver better efficiency:
 - ▷ in practice: memory access pattern
 - in theory: better algorithms

Memory access pattern

The memory wall: communication speed improves slower than arithmetic

Memory access pattern

- The memory wall: communication speed improves slower than arithmetic
- Deep memory hierarchy

Memory access pattern

- The memory wall: communication speed improves slower than arithmetic
- Deep memory hierarchy
- \rightsquigarrow Need to overlap communications by computation

Design of BLAS 3 [Dongarra & Al. 87]

▶ Group all ops in Matrix products gemm: Work $O(n^3) >>$ Data $O(n^2)$

MatMul has become a building block in practice

< 1969: $O(n^3)$ for everyone (Gauss, Householder, Danilevskii, etc)

< 1969: $O(n^3)$ for everyone (Gauss, Householder, Danilevskii, etc)

< 1969: $O(n^3)$ for everyone (Gauss, Householder, Danilevskii, etc)

Matrix Multiplication $\rightsquigarrow O$	(n^{ω})	1
[Strassen 69]:	$O(n^{2.807})$	Other operations
:	- ()	[Strassen 69]: Inverse in $O(n^{\omega})$
[Schönhage 81]	$O(n^{2.52})$	[Schönhage 72]: QR in $O(n^{\omega})$
:	()	[Bunch, Hopcroft 74]: LU in $O(n^{\omega})$
[Coppersmith, Winograd 90]	$O(n^{2.375})$	[Ibarra & al. 82]: Rank in $O(n^{\omega})$
	,	[Keller-Gehrig 85]: CharPoly in $O(n^{\omega} \log n)$
[Le Gall 14]	$O(n^{2.3728639})$	

< 1969: $O(n^3)$ for everyone (Gauss, Householder, Danilevskii, etc)

Matrix Multiplication $\rightsquigarrow O$	(n^{ω})	1	
[Strassen 69]:	$O(n^{2.807})$	Other operations	
:		[Strassen 69]: Ir	werse in $O(n^{\omega})$
[Schönhage 81]	$O(n^{2.52})$	[Schönhage 72]:	$QR \text{ in } O(n^\omega)$
:	· · · ·	[Bunch, Hopcroft 74]:	LU in $O(n^\omega)$
[Coppersmith, Winograd 90]	$O(n^{2.375})$	[lbarra & <i>al.</i> 82]:	$Rank \text{ in } O(n^\omega)$
	0(11)	[Keller-Gehrig 85]: Cha	rPoly in
:			$O(n^{\omega}\log n)$
[Le Gall 14]	$O(n^{2.3728639})$		

MatMul has become a building block in theoretical reductions

Reductions: theory

Reductions: theory

Common mistrust

- Fast linear algebra is
 - X never faster
 - × numerically unstable

Reductions: theory and practice

Common mistrust

- Fast linear algebra is
 - X never faster
 - X numerically unstable

Lucky coincidence

- ✓ same building block in theory and in practice
- \rightarrow reduction trees are still relevant

Reductions: theory and practice

Common mistrust

- Fast linear algebra is
 - × never faster
 - × numerically unstable

Lucky coincidence

- ✓ same building block in theory and in practice
- \rightsquigarrow reduction trees are still relevant

Road map towards efficiency in practice

- Tune the MatMul building block.
- 2 Tune the reductions.

Ingedients [FFLAS-FFPACK library]

• Compute over $\mathbb Z$ and delay modular reductions

$$\rightsquigarrow k\left(\frac{p-1}{2}\right)^2 < 2^{\text{mantissa}}$$

Ingedients [FFLAS-FFPACK library]

• Compute over $\mathbb Z$ and delay modular reductions

- Fastest integer arithmetic: double
- Cache optimizations

 $\rightsquigarrow k\left(\frac{p-1}{2}\right)^2 < 2^{53}$

→ numerical BLAS

Ingedients [FFLAS-FFPACK library]

• Compute over $\mathbb Z$ and delay modular reductions

- Fastest integer arithmetic: double
- Cache optimizations
- Strassen-Winograd $6n^{2.807} + \dots$

$$\rightsquigarrow 9^{\ell} \left\lfloor \frac{k}{2^{\ell}} \right\rfloor \left(\frac{p-1}{2} \right)^2 < 2^{53}$$

Ingedients [FFLAS-FFPACK library]

• Compute over $\mathbb Z$ and delay modular reductions

- Fastest integer arithmetic: double
- Cache optimizations

$$\rightsquigarrow 9^\ell \left\lfloor \tfrac{k}{2^\ell} \right\rfloor \left(\tfrac{p-1}{2} \right)^2 < 2^{53}$$

• Strassen-Winograd $6n^{2.807} + \dots$

with memory efficient schedules [Boyer, Dumas, P. and Zhou 09] Tradeoffs:

C. Pernet

 $p=83\text{,} \rightsquigarrow 1 \bmod /$ 10000 mul.

C. Pernet

C. Pernet

Exact Linear Algebra Algorithmic

Reductions in dense linear algebra

LU decomposition

▶ Block recursive algorithm \rightsquigarrow reduces to MatMul $\rightsquigarrow O(n^{\omega})$

n	1000	5000	10000	15000	20000
LAPACK-dgetrf fflas-ffpack	0.024s 0.058s	2.01s 2.46s	14.88s 16.08s	48.78s 47.47s	113.66 105.96s
ntel Haswell E3-1270 3.0Ghz using OpenBLAS-0.2.9					

Reductions in dense linear algebra

LU decomposition

▶ Block recursive algorithm \rightsquigarrow reduces to MatMul $\rightsquigarrow O(n^{\omega})$

n	1000	5000	10000	15000	20000
LAPACK-dgetrf fflas-ffpack	0.024s 0.058s	2.01s 2.46s	14.88s 16.08s	48.78s 47.47s	113.66 105.96s
Intel Haswell E3-1270 3.0Ghz using OpenBLAS-0.2.9					

Characteristic Polynomial

• A new reduction to matrix multiplication in $O(n^{\omega})$.

n	1000	2000	5000	10000	
magma-v2.19-9 fflas-ffpack	1.38s 0.532s	24.28s 2.936s	332.7s 32.71s	2497s 219.2s	
Intel Ivy-Bridge i5-3320 2.6Ghz using OpenBLAS-0.2.9					

Reductions in dense linear algebra

LU decomposition • Block recursive algorithm \rightsquigarrow reduces to MatMul $\rightsquigarrow O(n^{\omega})$ 1000 500010000 15000 20000 $\times 7.63$ n14.88s/ 113.66 0.024s 2.01s 48.78s LAPACK-dgetrf $\times 6.59$ 47.47s 105.96s fflas-ffpack 0.058s 2.46s 16.08s • Intel Haswell E3-1270 3.0Ghz using OpenBLAS-0.2.9

Characteristic Polynomial

• A new reduction to matrix multiplication in $O(n^{\omega})$.

n	1000	2000	5000	10000	×7.5
magma-v2.19-9 fflas-ffpack	1.38s 0.532s	24.28s 2.936s	332.7s 32.71s	2497s × 219.2s ×	×6.7
Intel Ivy-Bridge i5-	3320 2.6G	hz using (DpenBLAS-	0.2.9	

The case of Gaussian elimination

Which reduction to MatMul ?

The case of Gaussian elimination

Which reduction to MatMul ?

Slab recursive FFLAS-FFPACK

Tile recursive FFLAS-FFPACK

Sub-cubic complexity: recursive algorithms

The case of Gaussian elimination

Which reduction to MatMul ?

Tile recursive FFLAS-FFPACK

- Sub-cubic complexity: recursive algorithms
- Data locality

C. Pernet

Exact Linear Algebra Algorithmic

Tiled Iterative

Slab Recursive

Tiled Recursive

getrf: $A \rightarrow L, U$

Tiled Iterative

Slab Recursive

Tiled Recursive

 $\texttt{trsm:} \ B \leftarrow BU^{-1}, B \leftarrow L^{-1}B \\ \texttt{gemm:} \ C \leftarrow C - A \times B$

Tiled Iterative

Slab Recursive

Tiled Recursive

getrf: $A \rightarrow L, U$ trsm: $B \leftarrow BU^{-1}, B \leftarrow L^{-1}B$ gemm: $C \leftarrow C - A \times B$

Tiled Iterative

Slab Recursive

Tiled Recursive

 $\begin{array}{l} \texttt{getrf:} \ A \rightarrow L, U \\ \texttt{trsm:} \ B \leftarrow BU^{-1}, B \leftarrow L^{-1}B \\ \texttt{gemm:} \ C \leftarrow C - A \times B \end{array}$

getrf: $A \rightarrow L, U$

Tiled Recursive

Tiled Recursive

 $\texttt{trsm:} \ B \leftarrow BU^{-1}, B \leftarrow L^{-1}B \\ \texttt{gemm:} \ C \leftarrow C - A \times B$

Tiled Recursive

getrf: $A \rightarrow L, U$

Tiled Recursive

trsm: $B \leftarrow BU^{-1}, B \leftarrow L^{-1}B$ gemm: $C \leftarrow C - A \times B$

Tiled Iterative Slab Recursive

Tiled Recursive

getrf: $A \rightarrow L, U$

Tiled Recursive

 $\label{eq:trsm: B } \begin{array}{l} \mathsf{trsm:} \ B \leftarrow BU^{-1}, B \leftarrow L^{-1}B \\ \text{gemm:} \ C \leftarrow C - A \times B \end{array}$

Tiled Iterative Slab Recursive

Tiled Recursive

getrf: $A \rightarrow L, U$

Tiled Iterative

Slab Recursive

Tiled Recursive

getrf: $A \rightarrow L, U$

Tiled Iterative

Slab Recursive

Tiled Recursive

 $\begin{array}{l} \texttt{trsm:} \ B \leftarrow BU^{-1}, B \leftarrow L^{-1}B \\ \texttt{gemm:} \ C \leftarrow C - A \times B \end{array}$

Tiled Iterative

Slab Recursive

Tiled Recursive

getrf: $A \rightarrow L, U$

Tiled Iterative

Slab Recursive

Tiled Recursive

 $\begin{array}{l} \texttt{trsm:} \ B \leftarrow BU^{-1}, B \leftarrow L^{-1}B \\ \texttt{gemm:} \ C \leftarrow C - A \times B \end{array}$

Tiled Iterative

Slab Recursive

Tiled Recursive

getrf: $A \rightarrow L, U$ trsm: $B \leftarrow BU^{-1}, B \leftarrow L^{-1}B$ gemm: $C \leftarrow C - A \times B$

Tiled Iterative

Slab Recursive

Tiled Recursive

getrf: $A \rightarrow L, U$

Counting Modular Reductions

1	Tiled Iter. Right looking	$\frac{1}{3k}\mathbf{n^3} + \left(1 - \frac{1}{k}\right)n^2 + \left(\frac{1}{6}k - \frac{5}{2} + \frac{3}{k}\right)n$
\wedge	Tiled Iter. Left looking	$\left(2-\frac{1}{2k}\right)n^2 + \left(-\frac{5}{2}k-1+\frac{2}{k}\right)n+2k^2-2k+1$
k	Tiled Iter. Crout	$\left(\frac{5}{2} - \frac{1}{\mathbf{k}}\right)\mathbf{n^2} + \left(-2k - \frac{5}{2} + \frac{3}{k}\right)n + k^2$

Counting Modular Reductions

Tiled Iter. Crout $\left(\frac{5}{2} - \frac{1}{k}\right)\mathbf{n^2} + \left(-2k - \frac{5}{2} + \frac{3}{k}\right)n + k^2$	
Iter. Right looking $\frac{1}{3}\mathbf{n}^3 - \frac{1}{3}n$ IIter. Left Looking $\frac{3}{2}\mathbf{n}^2 - \frac{3}{2}n + 1$ $\stackrel{\checkmark}{\simeq}$ Iter. Crout $\frac{3}{2}\mathbf{n}^2 - \frac{7}{2}n + 3$	
Counting Modular Reductions

$k \ge 1$	Tiled Iter. Right looking Tiled Iter. Left looking Tiled Iter. Crout	$\frac{\frac{1}{3\mathbf{k}}\mathbf{n}^{3} + \left(1 - \frac{1}{k}\right)n^{2} + \left(\frac{1}{6}k - \frac{5}{2} + \frac{3}{k}\right)n}{\left(2 - \frac{1}{2\mathbf{k}}\right)\mathbf{n}^{2} + \left(-\frac{5}{2}k - 1 + \frac{2}{k}\right)n + 2k^{2} - 2k + 1}\left(\frac{5}{2} - \frac{1}{k}\right)\mathbf{n}^{2} + \left(-2k - \frac{5}{2} + \frac{3}{k}\right)n + k^{2}}$
k = 1	Iter. Right looking Iter. Left Looking Iter. Crout	$\frac{\frac{1}{3}n^3 - \frac{1}{3}n}{\frac{3}{2}n^2 - \frac{3}{2}n + 1}$ $\frac{3}{2}n^2 - \frac{7}{2}n + 3$
	Tiled Recursive	$2n^2 - n\log_2 n - n$
	Slab Recursive	$(1 + \frac{1}{4}\log_{2}\mathbf{n})\mathbf{n^2} - \frac{1}{2}n\log_2 n - n$

Impact in practice

Impact in practice

Dealing with rank deficiencies and computing rank profiles

Rank profiles: first linearly independent columns

- Major invariant of a matrix (echelon form)
- Gröbner basis computations (Macaulay matrix)
- Krylov methods

Gaussian elimination revealing echelon forms:

```
[Ibarra, Moran and Hui 82]
```

[Keller-Gehrig 85]

```
[Jeannerod, P. and Storjohann 13]
```


Computing rank profiles

Lessons learned (or what we thought was necessary):

- treat rows in order
- exhaust all columns before considering the next row
- slab block splitting required (recursive or iterative)
 similar to partial pivoting

Computing rank profiles

Lessons learned (or what we thought was necessary):

- treat rows in order
- exhaust all columns before considering the next row
- ► slab block splitting required (recursive or iterative) → similar to partial pivoting

Tiled recursive PLUQ [Dumas P. Sultan 13,15]

- Generalized to handle rank deficiency
 - > 4 recursive calls necessary
 - in-place computation

Pivoting strategies exist to recover rank profile and echelon forms

[Dumas, P. and Sultan 13]

 2×2 block splitting

[Dumas, P. and Sultan 13]

Recursive call

[Dumas, P. and Sultan 13]

 $\texttt{TRSM:} \ B \leftarrow BU^{-1}$

[Dumas, P. and Sultan 13]

 $\texttt{TRSM:} \ B \leftarrow L^{-1}B$

[Dumas, P. and Sultan 13]

2 independent recursive calls

[Dumas, P. and Sultan 13]

 $\texttt{TRSM:} \ B \leftarrow BU^{-1}$

[Dumas, P. and Sultan 13]

 $\texttt{TRSM:} \ B \leftarrow L^{-1}B$

[Dumas, P. and Sultan 13]

Recursive call

[Dumas, P. and Sultan 13]

Puzzle game (block cyclic rotations)

[Dumas, P. and Sultan 13]

- $O(mnr^{\omega-2})$ (degenerating to $2/3n^3$)
- computing col. and row rank profiles of all leading sub-matrices
- fewer modular reductions than slab algorithms
- rank deficiency introduces parallelism

🔋 Dumas, P. and Sultan ISSAC'15 (Thursday 9 @ 3PM)

Definition (Rank Profile matrix)

The unique $\mathcal{R}_A \in \{0,1\}^{m \times n}$ such that any pair of (i, j)-leading sub-matrix of \mathcal{R}_A and of A have the same rank.

🔋 Dumas, P. and Sultan ISSAC'15 (Thursday 9 @ 3PM)

Definition (Rank Profile matrix)

The unique $\mathcal{R}_A \in \{0, 1\}^{m \times n}$ such that any pair of (i, j)-leading sub-matrix of \mathcal{R}_A and of A have the same rank.

Theorem

- RowRP and CoIRP read directly on $\mathcal{R}(A)$
- ► Same holds for any (*i*, *j*)-leading submatrix.

🔋 Dumas, P. and Sultan ISSAC'15 (Thursday 9 @ 3PM)

Definition (Rank Profile matrix)

The unique $\mathcal{R}_A \in \{0, 1\}^{m \times n}$ such that any pair of (i, j)-leading sub-matrix of \mathcal{R}_A and of A have the same rank.

Theorem

- RowRP and CoIRP read directly on $\mathcal{R}(A)$
- ► Same holds for any (*i*, *j*)-leading submatrix.

🔋 Dumas, P. and Sultan ISSAC'15 (Thursday 9 @ 3PM)

Definition (Rank Profile matrix)

The unique $\mathcal{R}_A \in \{0, 1\}^{m \times n}$ such that any pair of (i, j)-leading sub-matrix of \mathcal{R}_A and of A have the same rank.

Theorem

- RowRP and CoIRP read directly on $\mathcal{R}(A)$
- ► Same holds for any (*i*, *j*)-leading submatrix.

🔋 Dumas, P. and Sultan ISSAC'15 (Thursday 9 @ 3PM)

Definition (Rank Profile matrix)

The unique $\mathcal{R}_A \in \{0,1\}^{m \times n}$ such that any pair of (i, j)-leading sub-matrix of \mathcal{R}_A and of A have the same rank.

Theorem

• RowRP and CoIRP read directly on $\mathcal{R}(A)$

 $A = PLUQ = P \begin{bmatrix} L & 0\\ M & I_{m-r} \end{bmatrix}$

► Same holds for any (*i*, *j*)-leading submatrix.

g submatrix.

$$\begin{bmatrix} 3 & 5 & 9 & 12 \\ RowRP = \{1,4\} \\ ColRP = \{1,2\} \\ \begin{bmatrix} I_r \\ 0 \end{bmatrix} \begin{bmatrix} U & V \\ I_{n-r} \end{bmatrix} Q$$

🔋 Dumas, P. and Sultan ISSAC'15 (Thursday 9 @ 3PM)

Definition (Rank Profile matrix)

The unique $\mathcal{R}_A \in \{0,1\}^{m \times n}$ such that any pair of (i, j)-leading sub-matrix of \mathcal{R}_A and of A have the same rank.

Theorem $\begin{array}{c} \text{ RowRP and CoIRP read directly on } \mathcal{R}(A) \\ \text{ Same holds for any } (i,j) \text{-leading submatrix.} \end{array} \xrightarrow{\begin{array}{c} A \\ 1 & 2 & 3 & 4 \\ 2 & 4 & 5 & 8 \\ 1 & 2 & 3 & 4 \\ 3 & 5 & 9 & 12 \end{array}} \xrightarrow{\begin{array}{c} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \\ \text{RowRP} = \{1,4\} \\ \text{CoIRP} = \{1,2\} \\ A = PLUQ = P \begin{bmatrix} L & 0 \\ M & I_{m-r} \end{bmatrix} P^T P \begin{bmatrix} I_r \\ 0 \end{bmatrix} Q Q^T \begin{bmatrix} U & V \\ I_{n-r} \end{bmatrix} Q$

🔋 Dumas, P. and Sultan ISSAC'15 (Thursday 9 @ 3PM)

Definition (Rank Profile matrix)

The unique $\mathcal{R}_A \in \{0, 1\}^{m \times n}$ such that any pair of (i, j)-leading sub-matrix of \mathcal{R}_A and of A have the same rank.

Theorem

- RowRP and CoIRP read directly on $\mathcal{R}(A)$
- ► Same holds for any (*i*, *j*)-leading submatrix.

$$A = PLUQ = \underbrace{P\begin{bmatrix} L & 0\\ M & I_{m-r} \end{bmatrix} P^{T}}_{\overline{L}} \underbrace{P\begin{bmatrix} I_{r} \\ 0 \end{bmatrix} Q}_{\Pi_{P,Q}} \underbrace{Q^{T}\begin{bmatrix} U & V\\ I_{n-r} \end{bmatrix} Q}_{\overline{U}}$$

R

8

 $R_{OW}RP - \{14\}$

🔋 Dumas, P. and Sultan ISSAC'15 (Thursday 9 @ 3PM)

Definition (Rank Profile matrix)

The unique $\mathcal{R}_A \in \{0, 1\}^{m \times n}$ such that any pair of (i, j)-leading sub-matrix of \mathcal{R}_A and of A have the same rank.

Theorem

• RowRP and CoIRP read directly on
$$\mathcal{R}(A)$$

► Same holds for any (*i*, *j*)-leading submatrix.

$$A = PLUQ = \underbrace{P \begin{bmatrix} L & 0 \\ M & I_{m-r} \end{bmatrix} P^{T}}_{\overline{L}} \underbrace{P \begin{bmatrix} I_{r} \\ 0 \end{bmatrix} Q}_{\Pi_{P,Q}} \underbrace{Q^{T} \begin{bmatrix} U & V \\ I_{n-r} \end{bmatrix} Q}_{\overline{U}}$$

With appropriate pivoting:
$$\Pi_{P,Q} = \mathcal{R}(A)$$

C. Pernet

Exact Linear Algebra Algorithmic

R

 $RowRP = \{1,4\}$

 $\begin{array}{l} \mbox{Minimal polynomial: [Wiedemann 86]} \\ \rightsquigarrow \mbox{iterative Krylov/Lanczos methods} \\ \rightsquigarrow O(nE(n)+n^2) \end{array}$

Matrix-Vector Product: building block, \rightsquigarrow costs E(n)

Minimal polynomial: [Wiedemann 86] \rightsquigarrow iterative Krylov/Lanczos methods $\rightsquigarrow O(nE(n) + n^2)$

Rank, Det, Solve: [Chen& Al. 02] \rightsquigarrow reduces to MinPoly + preconditioners $\rightsquigarrow O(nE(n) + n^2)$

Minimal polynomial: [Wiedemann 86] \rightsquigarrow iterative Krylov/Lanczos methods $\rightsquigarrow O(nE(n) + n^2)$

Rank, Det, Solve: [Chen& Al. 02] \rightsquigarrow reduces to MinPoly + preconditioners $\rightsquigarrow O(nE(n) + n^2)$

Characteristic Poly.: [Dumas P. Saunders 09] → reduces to MinPoly, Rank, ...

Matrix-Vector Product: building block, \rightsquigarrow costs E(n)

Minimal polynomial: [Wiedemann 86] \rightsquigarrow iterative Krylov/Lanczos methods $\rightsquigarrow O(nE(n) + n^2)$

Rank, Det, Solve: [Chen& Al. 02] \rightsquigarrow reduces to MinPoly + preconditioners $\rightsquigarrow O(nE(n) + n^2)$

Characteristic Poly.: [Dumas P. Saunders 09] → reduces to MinPoly, Rank, ...

Outline

- Parallel exact linear algebra
 - Ingredients for the parallelization
 - Parallel dense linear algebra mod p

Size Dimension trade-offs

Computing with coefficients of varying size: $\mathbb{Z},\mathbb{Q},K[X],\ldots$

Multimodular methods

over K[X]: evaluation-interpolation

over \mathbb{Z}, \mathbb{Q} : Chinese Remainder Theorem

Cost = Algebraic Cost × Size(Output)

✓ avoids coefficient blow-up

X uniform (worst case) cost for all arithmetic ops
Computing with coefficients of varying size: $\mathbb{Z}, \mathbb{Q}, K[X], \ldots$

Multimodular methods

over K[X]: evaluation-interpolation over Z,Q: Chinese Remainder Theorem

Cost = Algebraic Cost × Size(Output)

✓ avoids coefficient blow-up

X uniform (worst case) cost for all arithmetic ops

Example

Hadamard's bound: $|\det(A)| \le (||A||_{\infty}\sqrt{n})^n$. LinSys_Z $(n) = O(n^{\omega} \times n(\log n + \log ||A||_{\infty}))$

Computing with coefficients of varying size: $\mathbb{Z}, \mathbb{Q}, K[X], \ldots$

Multimodular methods

over K[X]: evaluation-interpolation over Z,Q: Chinese Remainder Theorem

Cost = Algebraic Cost × Size(Output)

✓ avoids coefficient blow-up

x uniform (worst case) cost for all arithmetic ops

Example

 $\begin{array}{l} \mbox{Hadamard's bound: } |\det(A)| \leq (\|A\|_{\infty}\sqrt{n})^n. \\ \mbox{LinSys}_{\mathbb{Z}}(n) = O(n^{\omega} \times n(\log n + \log \|A\|_{\infty})) = O(n^{\omega+1}\log \|A\|_{\infty}) \end{array} \end{array}$

Computing with coefficients of varying size: $\mathbb{Z}, \mathbb{Q}, K[X], \ldots$

Lifting techniques

p-adic lifting: [Moenck & Carter 79, Dixon 82]

- ▶ One computation over Z_p
- \blacktriangleright Iterative lifting of the solution to \mathbb{Z},\mathbb{Q}

Example

$$\operatorname{LinSys}_{\mathbb{Z}}(n) = O(n^3 \log \|A\|_{\infty}^{1+\epsilon})$$

Computing with coefficients of varying size: $\mathbb{Z},\mathbb{Q},K[X],\ldots$

Lifting techniques

p-adic lifting: [Moenck & Carter 79, Dixon 82]

- ► One computation over Z_p
- \blacktriangleright Iterative lifting of the solution to \mathbb{Z},\mathbb{Q}

High order lifting : [Storjohann 02,03]

- Fewer iteration steps
- larger dimension in the lifting

Example

 $\mathtt{LinSys}_{\mathbb{Z}}(n) = O(n^{\omega} \log \|A\|_{\infty})$

Matrix multiplication: door to fast linear algebra

• over \mathbb{Z} : $O(n^{\omega} M(\log ||A||)) = O(n^{\omega} \log ||A||)$

Matrix multiplication: door to fast linear algebra

• over \mathbb{Z} : $O(n^{\omega} M(\log ||A||)) = O(n^{\omega} \log ||A||)$

Equivalence over \mathbb{Z} or K[X]: Hermite normal form

- [Kannan & Bachem 79]:
- [Chou & Collins 82]:
- [Domich & Al. 87], [Illiopoulos 89]:
- [Micciancio & Warinschi01]:
- [Storjohann & Labahn 96]:
- [Gupta & Storjohann 11]:

```
\in P

O(n^{6} \log ||A||)

O(n^{4} \log ||A||)

O(n^{5} \log ||A||^{2}),

O(n^{3} \log ||A||) heur.

O(n^{\omega+1} \log ||A||)

O(n^{3} \log ||A||)
```

Matrix multiplication: door to fast linear algebra

• over \mathbb{Z} : $O(n^{\omega}M(\log \|A\|)) = O(n^{\omega}\log \|A\|)$

Equivalence over \mathbb{Z} or K[X]: Hermite normal form

- [Kannan & Bachem 79]:
- [Chou & Collins 82]:
- [Domich & Al. 87], [Illiopoulos 89]:
- [Micciancio & Warinschi01]:
- [Storjohann & Labahn 96]:
- [Gupta & Storjohann 11]:

Similarity over a field: Frobenius normal form

- [Giesbrecht 93]:
- ▶ [Storjohann 00]:
- [P. & Storjohann 07]:

 $\in P \\ O(n^{6} \log \|A\|) \\ O(n^{4} \log \|A\|) \\ O(n^{5} \log \|A\|^{2}), \\ O(n^{3} \log \|A\|) \text{ heur.} \\ O(n^{\omega+1} \log \|A\|) \\ O(n^{3} \log \|A\|) \\ O(n^{3} \log \|A\|)$

```
O(n^{\omega}) probabilistic
O(n^{\omega}) deterministic
O(n^{\omega}) probabilistic
```

Matrix multiplication: door to fast linear algebra

• over \mathbb{Z} : $O(n^{\omega}M(\log \|A\|)) = O(n^{\omega}\log \|A\|)$

Equivalence over \mathbb{Z} or K[X]: Hermite normal form

- [Kannan & Bachem 79]:
- [Chou & Collins 82]:
- [Domich & Al. 87], [Illiopoulos 89]:
- [Micciancio & Warinschi01]:
- [Storjohann & Labahn 96]:
- [Gupta & Storjohann 11]:

Similarity over a field: Frobenius normal form

- [Giesbrecht 93]:
- [Storjohann 00]:
- [P. & Storjohann 07]:

 $\in P \\ O(n^{6} \log ||A||) \\ O(n^{4} \log ||A||) \\ O(n^{5} \log ||A||^{2}), \\ O(n^{3} \log ||A||) \text{ heur.} \\ O(n^{\omega+1} \log ||A||) \\ O(n^{3} \log ||A||) \\ O(n^{3} \log ||A||)$

```
O(n^{\omega}) probabilistic
O(n^{\omega}) deterministic
O(n^{\omega}) probabilistic
July 6, 2015 46 / 73
```

Building blocks and reductions

In brief

Reductions to a building blockMatrix Mult: block rec. $\sum_{i=1}^{\log n} n \left(\frac{n}{2^i}\right)^{\omega-1} = O(n^{\omega})$ (Gauss, REF)Matrix Mult: Iterative $\sum_{k=1}^{n} k \left(\frac{n}{k}\right)^{\omega} = O(n^{\omega})$ (Frobenius)Linear Sys: over \mathbb{Z} (Hermite Normal Form)Circle (dimension componenties)

Size/dimension compromises

- Hermite normal form : rank 1 updates reducing the determinant
- Frobenius normal form : degree k, dimension n/k for $k = 1 \dots n$

Hermite normal form: naive algorithm

Reduced Echelon form over a ring:

a ring:
$$\begin{bmatrix} p_2 & * & * & x_{2,3} & * \\ & & p_3 & * \end{bmatrix}$$
 with $0 \le x_{*,j} < p_j.$

 $[p_1 * x_{1,2} * * x_{1,3} *]$

for
$$i = 1 \dots n$$
 do
 $(g, t_i, \dots, t_n) = \operatorname{xgcd}(A_{i,i}, A_{i+1,i}, \dots, A_{n,i})$
 $L_i \leftarrow \sum_{j=i+1}^n t_j L_j$
for $j = i + 1 \dots n$ do
 $L_j \leftarrow L_j - \frac{A_{j,i}}{g} L_i$ \triangleright eliminate
end for
for $j = 1 \dots i - 1$ do
 $L_j \leftarrow L_j - \lfloor \frac{A_{j,i}}{g} \rfloor L_i$ \triangleright reduce
end for
end for

Computing modulo the determinant [Domich & Al. 87]

Property

• For A non-singular: $\max_i \sum_j H_{ij} \leq \det H = \det A$

Example

$$A = \begin{bmatrix} -5 & 8 & -3 & -9 & 5 & 5 \\ -2 & 8 & -2 & -2 & 8 & 5 \\ 7 & -5 & -8 & 4 & 3 & -4 \\ 1 & -1 & 6 & 0 & 8 & -3 \end{bmatrix}, H = \begin{bmatrix} 1 & 0 & 3 & 237 & -299 & 90 \\ 0 & 1 & 1 & 103 & -130 & 40 \\ 0 & 0 & 4 & 352 & -450 & 135 \\ 0 & 0 & 0 & 486 & -627 & 188 \end{bmatrix}$$
$$\det A = 1944$$

Computing modulo the determinant [Domich & Al. 87]

Property

- For A non-singular: $\max_i \sum_j H_{ij} \leq \det H = \det A$
- Every computation can be done modulo $d = \det A$:

$$U' \begin{bmatrix} A \\ dI_n & I_n \end{bmatrix} = \begin{bmatrix} H & I_n \end{bmatrix}$$

Example

$$A = \begin{bmatrix} -5 & 8 & -3 & -9 & 5 & 5 \\ -2 & 8 & -2 & -2 & 8 & 5 \\ 7 & -5 & -8 & 4 & 3 & -4 \\ 1 & -1 & 6 & 0 & 8 & -3 \end{bmatrix}, H = \begin{bmatrix} 1 & 0 & 3 & 237 & -299 & 90 \\ 0 & 1 & 1 & 103 & -130 & 40 \\ 0 & 0 & 4 & 352 & -450 & 135 \\ 0 & 0 & 0 & 486 & -627 & 188 \end{bmatrix}$$
$$\det A = 1944$$

 $\rightsquigarrow O(n^3) \times M(n(\log n + \log \|A\|)) = O(n^5 \log \|A\|^2)$

Computing modulo the determinant

- Pessimistic estimate on the arithmetic size
- d large but most coefficients of H are small
- On average : only the last few columns are large
- \rightsquigarrow Compute H' close to H but with small determinant

Computing modulo the determinant

- Pessimistic estimate on the arithmetic size
- d large but most coefficients of H are small
- On average : only the last few columns are large

 \sim Compute H' close to H but with small determinant [Micciancio & Warinschi 01]

$$A = \begin{bmatrix} B & b \\ c^{T} & a_{n-1,n} \\ d^{T} & a_{n,n} \end{bmatrix}$$

$$d_{1} = \det\left(\begin{bmatrix} B \\ c^{T} \end{bmatrix}\right), d_{2} = \det\left(\begin{bmatrix} B \\ d^{T} \end{bmatrix}\right)$$

$$g = \gcd(d_{1}, d_{2}) = sd_{1} + td_{2} \quad \text{Then}$$

$$\det\left(\begin{bmatrix} B \\ sc^{T} + td^{T} \end{bmatrix}\right) = g$$

Micciancio & Warinschi algorithm

$$\begin{array}{ll} \mbox{Compute } d_1 = \det \left(\begin{bmatrix} B \\ c^T \end{bmatrix} \right), d_2 = \det \left(\begin{bmatrix} B \\ d^T \end{bmatrix} \right) & \triangleright \mbox{ Double Det } \\ (g, s, t) = \mbox{xgcd}(d_1, d_2) \\ \mbox{Compute } H_1 \mbox{ the HNF of } \begin{bmatrix} B \\ sc^T + td^T \end{bmatrix} \mbox{ mod } g & \triangleright \mbox{ Modular HNF } \\ \mbox{Recover } H_2 \mbox{ the HNF of } \begin{bmatrix} B & b \\ sc^T + td^T & sa_{n-1,n} + ta_{n,n} \end{bmatrix} & \triangleright \mbox{ AddCol } \\ \mbox{Recover } H_3 \mbox{ the HNF of } \begin{bmatrix} B & b \\ c^T & a_{n-1,n} \\ d^T & a_{n,n} \end{bmatrix} & \triangleright \mbox{ AddRow } \end{array}$$

Micciancio & Warinschi algorithm

$$\begin{array}{ll} \text{Compute } d_1 = \det \left(\begin{bmatrix} B \\ c^T \end{bmatrix} \right), d_2 = \det \left(\begin{bmatrix} B \\ d^T \end{bmatrix} \right) & \triangleright \text{ Double Det} \\ (g, s, t) = \mathsf{xgcd}(d_1, d_2) \\ \text{Compute } H_1 \text{ the HNF of } \begin{bmatrix} B \\ sc^T + td^T \end{bmatrix} \mod g & \triangleright \text{ Modular HNF} \\ \text{Recover } H_2 \text{ the HNF of } \begin{bmatrix} B & b \\ sc^T + td^T & sa_{n-1,n} + ta_{n,n} \end{bmatrix} & \triangleright \text{ AddCol} \\ \text{Recover } H_3 \text{ the HNF of } \begin{bmatrix} B & b \\ c^T & a_{n-1,n} \\ d^T & a_{n,n} \end{bmatrix} & \triangleright \text{ AddRow} \end{array}$$

Double Determinant

First approach: LU mod $p_1, \ldots, p_k + CRT$

- Only one elimination for the n-2 first rows
- 2 updates for the last rows (triangular back substitution)
- k large such that $\prod_{i=1}^{k} p_i > n^n \log \|A\|^{n/2}$

Double Determinant

First approach: LU mod $p_1, \ldots, p_k + CRT$

- Only one elimination for the n-2 first rows
- 2 updates for the last rows (triangular back substitution)
- k large such that $\prod_{i=1}^{k} p_i > n^n \log \|A\|^{n/2}$

Second approach: [Abbott Bronstein Mulders 99]

- Solve Ax = b.
- $\delta = \mathsf{lcm}(q_1, \dots, q_n)$ s.t. $x_i = p_i/q_i$

Then δ is a *large* divisor of $D = \det A$.

- Compute D/δ by LU mod p_1, \ldots, p_k + CRT
- k small, such that $\prod_{i=1}^{k} p_i > n^n \log \|A\|^{n/2} / \delta$

Double Determinant : improved

Property

Let $x = [x_1, \ldots, x_n]$ be the solution of $\begin{bmatrix} A & c \end{bmatrix} x = d$. Then $y = \begin{bmatrix} -\frac{x_1}{x_n}, \ldots, -\frac{x_{n-1}}{x_n}, \frac{1}{x_n} \end{bmatrix}$ is the solution of $\begin{bmatrix} A & d \end{bmatrix} y = c$.

- 1 system solve
- 1 LU for each p_i

$\rightsquigarrow d_1, d_2$ computed at about the cost of 1 déterminant

AddCol

Problem

Find a vector e such that

$$\begin{bmatrix} H_1 \mid e \end{bmatrix} = U \begin{bmatrix} B & b \\ sc^T + td^T & sa_{n-1,n} + ta_{n,n} \end{bmatrix}$$

$$e = U \begin{bmatrix} b \\ sa_{n-1,n} + ta_{n,n} \end{bmatrix}$$
$$= H_1 \begin{bmatrix} B \\ sc^T + td^T \end{bmatrix}^{-1} \begin{bmatrix} b \\ sa_{n-1,n} + ta_{n,n} \end{bmatrix}$$

 \rightsquigarrow Solve a system.

- n-1 first rows are *small*
- Iast row is large

AddCol

Idea:

replace the last row by a random *small* one w^T .

$$\begin{bmatrix} B\\ w^T \end{bmatrix} y = \begin{bmatrix} b\\ a_{n-1,n-1} \end{bmatrix}$$

Let $\{k\}$ be a basis of the kernel of B. Then

$$x = y + \alpha k.$$

where

$$\alpha = \frac{a_{n-1,n-1} - (sc^T + td^T) \cdot y}{(sc^T + td^T) \cdot k}$$

 \rightsquigarrow limits the expensive arithmetic to a few dot products

Definition

Unique $F = U^{-1}AU = Diag(C_{f_0}, ..., C_{f_k})$ with $f_k | f_{k-1} | ... | f_0$.

- From k to k + 1-shifted in $O(k(\frac{n}{k})^{\omega})$
- Compute iteratively from a 1-shifted form
- Invariant factors appear by increasing degree

- From k to k + 1-shifted in $O(k(\frac{n}{k})^{\omega})$
- Compute iteratively from a 1-shifted form
- Invariant factors appear by increasing degree
- Until the Hessenberg polycyclic form

- From k to k + 1-shifted in $O(k(\frac{n}{k})^{\omega})$
- Compute iteratively from a 1-shifted form
- Invariant factors appear by increasing degree
- Until the Hessenberg polycyclic form

$$n^{\omega} \sum_{k=1}^{n} \left(\frac{1}{k}\right)^{\omega-1} \le \zeta(\omega-1)n^{\omega} = O(n^{\omega})$$

- From k to k + 1-shifted in $O(k(\frac{n}{k})^{\omega})$
- Compute iteratively from a 1-shifted form
- Invariant factors appear by increasing degree
- Until the Hessenberg polycyclic form

$$n^{\omega} \sum_{k=1}^{n} \left(\frac{1}{k}\right)^{\omega-1} \le \zeta(\omega-1)n^{\omega} = O(n^{\omega})$$

- Generalized to the Frobenius form as well
- Transformation matrix in $O(n^{\omega} \log \log n)$

A new type size dimension trade-off

A new type size dimension trade-off

A new type size dimension trade-off

Outline

- Parallel exact linear algebra
 - Ingredients for the parallelization
 - Parallel dense linear algebra mod p

Parallelization

Parallel numerical linear algebra

- ▶ cost invariant wrt. splitting
 ▷ O(n³)
 - \rightsquigarrow fine grain \rightsquigarrow block iterative algorithms
- regular task load
- Numerical stability constraints

Parallelization

Parallel numerical linear algebra

- ▶ cost invariant wrt. splitting
 ▶ O(n³)
 - \rightsquigarrow fine grain \rightsquigarrow block iterative algorithms
- regular task load
- Numerical stability constraints

Exact linear algebra specificities

- cost affected by the splitting
 - $\triangleright \ O(n^{\omega}) \text{ for } \omega < 3$
 - modular reductions
 - \rightsquigarrow coarse grain
 - \rightsquigarrow recursive algorithms
- rank deficiencies
 unbalanced task loads

Ingredients for the parallelization

Criteria

- good performances
- portability across architectures
- abstraction for simplicity

Challenging key point: scheduling as a plugin

Program: only describes where the parallelism lies

Runtime: scheduling & mapping, depending on the context of execution

3 main models:

- Parallel loop [data parallelism]
- Pork-Join (independent tasks) [task parallelism]
- Oppendent tasks with data flow dependencies [task parallelism]

Data Parallelism

OMP

Limitation: very un-efficient with recursive parallel regions

- Limited to iterative algorithms
- No composition of routines
Task parallelism with fork-Join

- Task based program: spawn + sync
- Especially suited for recursive programs

```
void fibonacci(long* result, long n) {
  if (n < 2)
    *result = n;
  else {
    long x,y;
#pragma omp task
    fibonacci( &x, n-1 );
    fibonacci( &y, n-2 );
#pragma omp taskwait
    *result = x + y;
}
```

OMP (since v3)

Tasks with dataflow dependencies

- Task based model avoiding synchronizations
- Infer synchronizations from the read/write specifications
 - ▷ A task is ready for execution when all its inputs variables are ready
 - A variable is ready when it has been written
- Recently supported: Athapascan [96], Kaapi [06], StarSs [07], StarPU [08], Quark [10], OMP since v4 [14]...

Illustration: Cholesky factorization

```
void Cholesky( double* A, int N, size_t NB ) {
  for (size_t k=0; k < N; k \neq NB)
    clapack_dpotrf(CblasRowMajor, CblasLower, NB, \&A[k*N+k], N);
    for (size_t m=k+ NB: m < N: m += NB)
      cblas_dtrsm ( CblasRowMajor, CblasLeft, CblasLower, CblasNoTrans, CblasUnit,
       NB, NB, 1., &A[k*N+k], N, &A[m*N+k], N);
    }
    for (size_t m=k+ NB: m < N: m += NB)
      cblas_dsvrk ( CblasRowMajor, CblasLower, CblasNoTrans,
        NB, NB, -1.0, &A[m*N+k], N, 1.0, &A[m*N+m], N );
      for (size_t n=k+NB: n < m: n += NB)
        cblas_dgemm ( CblasRowMajor, CblasNoTrans, CblasTrans,
         NB, NB, NB, -1.0, &A[m*N+k], N, &A[n*N+k], N, 1.0, &A[m*N+n], N);
      }
    }
```

Illustration: Cholesky factorization

```
void Cholesky( double* A, int N, size_t NB ) {
#pragma omp parallel
#pragma omp single nowait
  for (size_t k=0; k < N; k \neq = NB)
    clapack_dpotrf( CblasRowMajor, CblasLower, NB, &A[k*N+k], N );
    for (size_t m=k+ NB: m < N: m += NB)
#pragma omp task firstprivate(k, m) shared(A)
      cblas_dtrsm ( CblasRowMajor, CblasLeft, CblasLower, CblasNoTrans, CblasUnit,
        NB, NB, 1., &A[k*N+k], N, &A[m*N+k], N);
#pragma omp taskwait // Barrier: no concurrency with next tasks
    for (size_t m=k+ NB; m < N; m += NB)
#pragma omp task firstprivate(k, m) shared(A)
      cblas_dsvrk ( CblasRowMajor, CblasLower, CblasNoTrans,
        NB. NB. -1.0. &A[m*N+k]. N. 1.0. &A[m*N+m]. N ):
      for (size_t n=k+NB: n < m: n += NB)
#pragma omp task firstprivate(k, m) shared(A)
        cblas_dgemm ( CblasRowMajor, CblasNoTrans, CblasTrans,
          NB, NB, NB, -1.0, &A[m*N+k], N, &A[n*N+k], N, 1.0, &A[m*N+n], N);
#pragma omp taskwait // Barrier: no concurrency with tasks at iteration k+1
  }
```


SYNC.

Illustration: Cholesky factorization

```
void Cholesky ( double * A, int N, size_t NB ) {
#pragma kaapi parallel
  for (size_t k=0; k < N; k \neq NB)
#pragma kaapi task readwrite(&A[k*N+k]{Id=N; [NB][NB]})
    clapack_dpotrf( CblasRowMajor, CblasLower, NB, &A[k*N+k], N );
    for (size_t m=k+ NB: m < N: m += NB)
#pragma kaapi task read(&A[k*N+k]{Id=N; [NB][NB]}) readwrite(&A[m*N+k]{Id=N; [NB][NB]})
      cblas_dtrsm ( CblasRowMajor, CblasLeft, CblasLower, CblasNoTrans, CblasUnit,
        NB, NB, 1., &A[k*N+k], N, &A[m*N+k], N );
    }
    for (size_t m=k+ NB: m < N: m += NB)
#pragma kaapi task read(&A[m*N+k]{Id=N;[NB][NB]}) readwrite(&A[m*N+m]{Id=N; [NB][NB]})
      cblas_dsvrk ( CblasRowMajor, CblasLower, CblasNoTrans,
        NB, NB, -1.0, &A[m*N+k], N, 1.0, &A[m*N+m], N );
      for (size_t n=k+NB: n < m: n += NB)
#pragma kaapi task read(&A[m*N+k]{Id=N; [NB][NB]}, &A[n*N+k]{Id=N; [NB][NB]}))
                          readwrite(&A[m*N+n]{Id=N; [NB][NB]})
        cblas_dgemm ( CblasRowMajor, CblasNoTrans, CblasTrans,
          NB, NB, NB, -1.0, &A[m*N+k], N, &A[n*N+k], N, 1.0, &A[m*N+n], N);
      }
    }
  // Implicit barrier only at the end of Kaapi parallel region
          C. Pernet
                                  Exact Linear Algebra Algorithmic
                                                                            July 6, 2015
                                                                                         67 / 73
```


Parallel matrix multiplication

[Dumas, Gautier, P. & Sultan 14]

Parallel matrix multiplication

[Dumas, Gautier, P. & Sultan 14]

Parallel matrix multiplication

[Dumas, Gautier, P. & Sultan 14]

Gaussian elimination

Gaussian elimination

Slab recursive FFLAS-FFPACK

Tile recursive FFLAS-FFPACK

Prefer recursive algorithms

Gaussian elimination

Tile recursive FFLAS-FFPACK

- Prefer recursive algorithms
- Better data locality

C. Pernet

[Dumas, Gautier, P. and Sultan 14] Comparing numerical efficiency (no modulo)

[Dumas, Gautier, P. and Sultan 14] Comparing numerical efficiency (no modulo)

[Dumas, Gautier, P. and Sultan 14] Comparing numerical efficiency (no modulo)

[Dumas, Gautier, P. and Sultan 14] Over the finite field $\mathbb{Z}/131071\mathbb{Z}$

[Dumas, Gautier, P. and Sultan 14] Over the finite field $\mathbb{Z}/131071\mathbb{Z}$

Design framework for high performance exact linear algebra

Asymptotic reduction > algorithm tuning > building block implementation

So far, floating point arithmetic delivers best speed

Design framework for high performance exact linear algebra

- So far, floating point arithmetic delivers best speed
- Medium size arithmetic: RNS

 harnesses floating point efficiency
 embarrassingly easy parallelization (and fault tolerance)

Design framework for high performance exact linear algebra

- So far, floating point arithmetic delivers best speed
- Medium size arithmetic: RNS

 Arresses floating point efficiency

 embarrassingly easy parallelization (and fault tolerance)
- Favor tiled recursive algorithms

 ~~~ architecture oblivious vs aware algorithms [Gustavson 07]

Design framework for high performance exact linear algebra

- So far, floating point arithmetic delivers best speed
- Medium size arithmetic: RNS

 Arresses floating point efficiency
 embarrassingly easy parallelization (and fault tolerance)
- ► Favor tiled recursive algorithms → architecture oblivious vs aware algorithms [Gustavson 07]
- ▶ New pivoting strategies revealing all rank profile informations → tournament pivoting? [Demmel, Grigori and Xiang 11]

Design framework for high performance exact linear algebra

- So far, floating point arithmetic delivers best speed
- Medium size arithmetic: RNS

 harnesses floating point efficiency
 embarrassingly easy parallelization (and fault tolerance)
- Favor tiled recursive algorithms

 ~~~ architecture oblivious vs aware algorithms [Gustavson 07]
- ▶ New pivoting strategies revealing all rank profile informations → tournament pivoting? [Demmel, Grigori and Xiang 11]
- Seek size-dimension trade-offs, even heuristic ones,
Conclusion

Design framework for high performance exact linear algebra

Asymptotic reduction > algorithm tuning > building block implementation

- So far, floating point arithmetic delivers best speed
- Medium size arithmetic: RNS

 harnesses floating point efficiency
 embarrassingly easy parallelization (and fault tolerance)
- Favor tiled recursive algorithms

 ~~~ architecture oblivious vs aware algorithms [Gustavson 07]
- ▶ New pivoting strategies revealing all rank profile informations → tournament pivoting? [Demmel, Grigori and Xiang 11]
- Seek size-dimension trade-offs, even heuristic ones,
- Recursive tasks and coarse grain parallelization
 Light weight task workstealing management required
 Need for an improved recursive dataflow scheduling

Large scale distributed exact linear algebra

- reducing communications [Demmel, Grigori and Xiang 11]
- sparse and hybrid [Faugère and Lachartre 10]

Large scale distributed exact linear algebra

- reducing communications [Demmel, Grigori and Xiang 11]
- sparse and hybrid [Faugère and Lachartre 10]

Structured linear algebra

- A lot of action recently [Jeannerod Schost 08], [Chowdhury & Al. 15]
- Combined with recent advances in linear algebra over K[X]
- Applications to list decoding

Large scale distributed exact linear algebra

- reducing communications [Demmel, Grigori and Xiang 11]
- sparse and hybrid [Faugère and Lachartre 10]

Structured linear algebra

- A lot of action recently [Jeannerod Schost 08], [Chowdhury & Al. 15]
- Combined with recent advances in linear algebra over K[X]
- Applications to list decoding

Symbolic-numeric computation

High precision floating point linear algebra via exact rational arithmetic and RNS

Large scale distributed exact linear algebra

- reducing communications [Demmel, Grigori and Xiang 11]
- sparse and hybrid [Faugère and Lachartre 10]

Structured linear algebra

- A lot of action recently [Jeannerod Schost 08], [Chowdhury & Al. 15]
- Combined with recent advances in linear algebra over K[X]
- Applications to list decoding

Symbolic-numeric computation

High precision floating point linear algebra via exact rational arithmetic and RNS

Thank you