Faster algorithms for the characteristic polynomial

Clément Pernet and Arne Storjohann

Symbolic Computation Group
University of Waterloo, Canada.

ISSAC 2007, Waterloo, July 30

Problem

Compute the characteristic polynomial of a dense matrix over a field

Problem

Compute the characteristic polynomial of a dense matrix over a field

Result

Randomized Las-Vegas algorithm in $\mathcal{O}\left(n^{\omega}\right)$ field operations for large fields $\left(\# F>2 n^{2}\right)$.

Problem

Compute the characteristic polynomial of a dense matrix over a field

Result

Randomized Las-Vegas algorithm in $\mathcal{O}\left(n^{\omega}\right)$ field operations for large fields $\left(\# F>2 n^{2}\right)$.

- Improves previous complexity by a $\log n$ factor,
- Optimal reduction to Matrix multiplication.

Problem

Compute the characteristic polynomial of a dense matrix over a field

Result

Randomized Las-Vegas algorithm in $\mathcal{O}\left(n^{\omega}\right)$ field operations for large fields $\left(\# F>2 n^{2}\right)$.

- Improves previous complexity by a $\log n$ factor,
- Optimal reduction to Matrix multiplication.
- Practical efficiency. E.g. over \mathbb{Z}_{547909} :

n	500	5000	15000
LinBox	0.91 s	4 m 44 s	2 h 20 m
magma-2.13	1.27 s	15 m 32 s	7 h 28 m

Outline

(1) State of the art
(2) A new algorithm

- Shifted forms
- Principle of the new algorithm
- Complexity
(3) The new algorithm into practice

State of the art
A new algorithm
The new algorithm into practice

Outline

(9) State of the art

(2) A new algorithm

- Shifted forms
- Principle of the new algorithm
- Complexity
(3) The new algorithm into practice

Pre-Strassen age

Leverrier 1840: trace of powers of A, and Newton's formula

- improved/rediscovered by Souriau, Faddeev, Frame and Csanky
- $\mathcal{O}\left(n^{4}\right)$, based on Matrix multiplication
- Suited for parallel computation model

Pre-Strassen age

Leverrier 1840: trace of powers of A, and Newton's formula

- improved/rediscovered by Souriau, Faddeev, Frame and Csanky
- $\mathcal{O}\left(n^{4}\right)$, based on Matrix multiplication
- Suited for parallel computation model

Danilevskii 1937: elementary row/column operations
$\Rightarrow \mathcal{O}\left(n^{3}\right)$

Pre-Strassen age

Leverrier 1840: trace of powers of A, and Newton's formula

- improved/rediscovered by Souriau, Faddeev, Frame and Csanky
- $\mathcal{O}\left(n^{4}\right)$, based on Matrix multiplication
- Suited for parallel computation model

Danilevskii 1937: elementary row/column operations $\Rightarrow \mathcal{O}\left(n^{3}\right)$
Hessenberg 1942: transformation to quasi-upper triangular and determinant expansion formula.
$\Rightarrow \mathcal{O}\left(n^{3}\right)$

Post-Strassen age

Preparata \& Sarwate 1978: Update Csanky with fast matrix multiplication
 $$
\Rightarrow \mathcal{O}\left(n^{\omega+1}\right)
$$

Post-Strassen age

Preparata \& Sarwate 1978: Update Csanky with fast matrix multiplication
$\Rightarrow \mathcal{O}\left(n^{\omega+1}\right)$
Keller-Gehrig 1985, alg.1: computes $\left(A^{2 i}\right)_{i=1 \ldots \log _{2} n}$ to form a Krylov basis.

- $\mathcal{O}\left(n^{\omega} \log n\right)$
- the best complexity up to now

Post-Strassen age

Preparata \& Sarwate 1978: Update Csanky with fast matrix multiplication

$$
\Rightarrow \mathcal{O}\left(n^{\omega+1}\right)
$$

Keller-Gehrig 1985, alg.1: computes $\left(A^{2^{i}}\right)_{i=1 \ldots \log _{2} n}$ to form a Krylov basis.

- $\mathcal{O}\left(n^{\omega} \log n\right)$
- the best complexity up to now

Keller-Gehrig 1985, alg.2: inspired by Danilevskii, block operations

- $\mathcal{O}\left(n^{\omega}\right)$
- but only valid with generic matrices

Outline

(9) State of the art

(2) A new algorithm

- Shifted forms
- Principle of the new algorithm
- Complexity
(3) The new algorithm into practice

Definition (degree d Krylov matrix of one vector v)

$$
K=\left[\begin{array}{llll}
v & A v & \ldots & A^{d-1} v
\end{array}\right]
$$

Property

$$
A \times K=K \times \underbrace{\left[\begin{array}{llll}
0 & & & * \\
1 & & & * \\
& \ddots & & * \\
& & 1 & *
\end{array}\right]}_{C_{P_{\min }, v}}
$$

Definition (degree d Krylov matrix of one vector v)

$$
K=\left[\begin{array}{llll}
v & A v & \ldots & A^{d-1} v
\end{array}\right]
$$

Property

$$
A \times K=K \times \underbrace{\left[\begin{array}{llll}
0 & & & * \\
1 & & & * \\
& \ddots & & * \\
& & 1 & *
\end{array}\right]}_{C_{P_{\min }, V}}
$$

$$
\Rightarrow \text { if } d=n,
$$

$$
K^{-1} A K=C_{P_{c a r}^{A}}
$$

Definition (degree d Krylov matrix of one vector v)

$$
K=\left[\begin{array}{llll}
v & A v & \ldots & A^{d-1} v
\end{array}\right]
$$

Property

$$
A \times K=K \times \underbrace{\left[\begin{array}{llll}
0 & & & * \\
1 & & & * \\
& \ddots & & * \\
& & 1 & *
\end{array}\right]}_{C_{P_{\min }}}
$$

\Rightarrow if $d=n$,

$$
K^{-1} A K=C_{P_{c a r}^{A}}
$$

[Keller-Gehrig, alg. 2] : $K^{-1} A K$ in $\mathcal{O}\left(n^{\omega}\right)$ for A generic

Definition (degree k Krylov matrix of several vectors v_{i})

$$
K=\left[\begin{array}{lll}
v_{1} & \ldots & \left.\left.A^{k-1} v_{1}\left|\begin{array}{lll}
v_{2} & \ldots & A^{k-1} v_{2}
\end{array}\right| \ldots \right\rvert\, \begin{array}{lll}
v_{l} & \ldots & A^{k-1} v_{l}
\end{array}\right]
\end{array}\right.
$$

Property

Fact (Shift Hessenberg form)

If $\left(d_{1}, \ldots d_{l}\right)$ is lexicographically maximal such that

$$
K=\left[\begin{array}{lll}
v_{1} & \ldots & A^{d_{1}-1} v_{1} \\
& \ldots & v_{l} \\
\ldots & \ldots & A^{d_{l}-1} v_{l}
\end{array}\right]
$$

is non-singular, then

Shifted forms
Principle of the new algorithm
Complexity

Principle

k-shifted form:

Shifted forms
Principle of the new algorithm
Complexity

Principle

$k+1$-shifted form:

Principle

- Compute iteratively from 1 -shifted form to d_{1}-shifted form

Principle

- Compute iteratively from 1-shifted form to d_{1}-shifted form
- each completed block appears in the increasing degree order

Principle

- Compute iteratively from 1-shifted form to d_{1}-shifted form
- each completed block appears in the increasing degree order
- until the shifted Hessenberg form is obtained:

State of the art

A new algorithm

The new algorithm into practice

Shifted forms
Principle of the new algorithm Complexity

Example

Example

Shifted forms
Principle of the new algorithm Complexity

Example

State of the art
A new algorithm
The new algorithm into practice

Shifted forms
Principle of the new algorithm Complexity

Example

腊

State of the art

Shifted forms
Principle of the new algorithm Complexity

Example

State of the art
A new algorithm
The new algorithm into practice

Shifted forms
Principle of the new algorithm Complexity

Example

State of the art

Shifted forms
Principle of the new algorithm Complexity

Example

State of the art

> A new algorithm

The new algorithm into practice

Shifted forms
Principle of the new algorithm Complexity

Example

State of the art

Shifted forms
Principle of the new algorithm Complexity

Example

State of the art
A new algorithm

The new algorithm into practice

Shifted forms
Principle of the new algorithm Complexity

Example

State of the art

A new algorithm

The new algorithm into practice

Shifted forms
Principle of the new algorithm Complexity

Example

State of the art

Shifted forms
Principle of the new algorithm Complexity

Example

State of the art

Shifted forms
Principle of the new algorithm Complexity

Example

Lemma
If $\# F>2 n^{2}$, the transformation will succeed with high probability. Failure is detected.

If $\# F>2 n^{2}$, the transformation will succeed with high probability. Failure is detected.

How to use fast matrix arithmetic ?

Principle of the new algorithm Complexity

Permutations: compressing the dense columns

Shifted forms
Principle of the new algorithm
Complexity

Permutations: compressing the dense columns

Reduction to Matrix multiplication

Similarity transformation:

$$
K^{-1} A K=Q^{\prime T}\left[\begin{array}{ll}
1 & * \\
0 & *
\end{array}\right] P^{\prime T} Q\left[\begin{array}{ll}
1 & * \\
0 & *
\end{array}\right] P Q^{\prime}\left[\begin{array}{ll}
1 & * \\
0 & *
\end{array}\right] P^{\prime}
$$

Shifted forms

Reduction to Matrix multiplication

Similarity transformation:

$$
K^{-1} A K=Q^{\prime T}\left(\left[\begin{array}{ll}
I & * \\
0 & *
\end{array}\right]\left(P^{\prime T} Q\left(\left[\begin{array}{ll}
I & * \\
0 & *
\end{array}\right]\left(P Q^{\prime}\left[\begin{array}{ll}
I & * \\
0 & *
\end{array}\right]\right)\right)\right)\right) P^{\prime}
$$

Shifted forms

Reduction to Matrix multiplication

Similarity transformation:

$$
\begin{aligned}
K^{-1} A K=Q^{\prime T} & \left(\left[\begin{array}{ll}
1 & * \\
0 & *
\end{array}\right]\left(P^{\prime T} Q\left(\left[\begin{array}{ll}
1 & * \\
0 & *
\end{array}\right]\left(P Q^{\prime}\left[\begin{array}{ll}
1 & * \\
0 & *
\end{array}\right]\right)\right)\right)\right) P^{\prime} \\
& \Rightarrow \mathcal{O}\left(k\left(\frac{n}{k}\right)^{\omega}\right)
\end{aligned}
$$

Reduction to Matrix multiplication

Similarity transformation:

$$
\begin{aligned}
K^{-1} A K=Q^{\prime T} & \left(\left[\begin{array}{ll}
I & * \\
0 & *
\end{array}\right]\left(P^{\prime T} Q\left(\left[\begin{array}{ll}
1 & * \\
0 & *
\end{array}\right]\left(P Q^{\prime}\left[\begin{array}{ll}
I & * \\
0 & *
\end{array}\right]\right)\right)\right)\right) P^{\prime} \\
& \Rightarrow \mathcal{O}\left(k\left(\frac{n}{k}\right)^{\omega}\right)
\end{aligned}
$$

Rank profile: derived from LQUP

$$
\Rightarrow \mathcal{O}\left(k\left(\frac{n}{k}\right)^{\omega}\right)
$$

Reduction to Matrix multiplication

Similarity transformation:

$$
\Rightarrow \mathcal{O}\left(k\left(\frac{n}{k}\right)^{\omega}\right)
$$

Rank profile: derived from LQUP

$$
\begin{aligned}
& \Rightarrow \mathcal{O}\left(k\left(\frac{n}{k}\right)^{\omega}\right) \\
& \sum_{k=1}^{n} k\left(\frac{n}{k}\right)^{\omega}=n^{\omega} \sum_{k=1}^{n} \frac{1}{k^{\omega-1}}=\mathcal{O}\left(n^{\omega}\right)
\end{aligned}
$$

State of the art
A new algorithm
The new algorithm into practice

Shifted forms
Principle of the new algorithm
Complexity

A new type of reduction

Shifted forms
Principle of the new algorithm
Complexity

A new type of reduction

Shifted forms
Principle of the new algorithm
Complexity

A new type of reduction

$$
x I_{n}-A
$$

dimension $=n$ degree $=1$

dimension $=1$ degree $=n$
$\operatorname{det}\left(x I_{n}-A\right)$

Keller-Gehrig 2

dimension $=\frac{n}{2^{i}}$
degree $=2^{i}$

New algorithm

Faster algorithms for the characteristic polynomial

Outline

(1) State of the art
 (2) A new algorithm
 - Shifted forms
 - Principle of the new algorithm
 - Complexity

(3) The new algorithm into practice

Improving the preconditioning

The preconditioning phase:

$$
A \leftarrow U^{-1} A U
$$

for a random matrix U.
(reminds [Kaltofen, Krishnamoorthy, Saunders 87])

Improving the preconditioning

The preconditioning phase:

$$
A \leftarrow U^{-1} A U
$$

for a random matrix U.
(reminds [Kaltofen, Krishnamoorthy, Saunders 87])

Instead, use a block Krylov preconditioning:

$$
\begin{gathered}
A \leftarrow V^{-1} A V \\
V=\left[\begin{array}{llll}
W & A W & \ldots & A^{c-1} W
\end{array}\right]
\end{gathered}
$$

for a random $n \times n / c$ matrix W.

Improving the preconditioning

The preconditioning phase:

$$
A \leftarrow U^{-1} A U
$$

for a random matrix U.
(reminds [Kaltofen, Krishnamoorthy, Saunders 87])

Instead, use a block Krylov preconditioning:

$$
A \leftarrow V^{-1} A V
$$

$$
V=\left[\begin{array}{llll}
W & A W & \ldots & A^{c-1} W
\end{array}\right]
$$

for a random $n \times n / c$ matrix W.

Property

$$
V^{-1} A V \text { is in } c \text { shifted form. }
$$

Efficiency balancing parameter

c small: full square matrix multiplications, but more ops c large: tends to matrix-vector products, but less ops

Efficiency balancing parameter

c small: full square matrix multiplications, but more ops
c large: tends to matrix-vector products, but less ops \Rightarrow parameter c balances efficiency

Efficiency balancing parameter

c small: full square matrix multiplications, but more ops
c large: tends to matrix-vector products, but less ops \Rightarrow parameter c balances efficiency

Experiments

n	LU-Krylov	New algorithm
200	0.024	0.032
300	0.06 s	0.088 s
500	0.248 s	0.316 s
750	1.084 s	1.288 s
1000	2.42 s	2.296 s
5000	267.6 s	153.9 s
10000	1827 s	991 s
20000	14652 s	7097 s
30000	48887 s	24928 s

Computation time for 1 Frobenius block matrices, Itanium2-64 1.3Ghz, 192Gb

State of the art

A new algorithm
The new algorithm into practice

Experiments

C. Pernet and A. Storjohann Faster algorithms for the characteristic polynomial

Comparison to Magma and previous LinBox

Conclusion and perspectives

Results:

- Las Vegas reduction to matrix multiplication,
- The Frobenius normal form is easily derivable in $\mathcal{O}\left(n^{\omega}\right) \ldots$
- ...but no transformation matrix
- Adaptive combination with block Krylov in practice.

Conclusion and perspectives

Results:

- Las Vegas reduction to matrix multiplication,
- The Frobenius normal form is easily derivable in $\mathcal{O}\left(n^{\omega}\right) \ldots$
- ...but no transformation matrix
- Adaptive combination with block Krylov in practice.

Still to be done:

- Condition on the size of the field is a limitation. Eberly's algorithm ?
- Ideally: derandomization? (deterministic)
- Unification with matrix polynomial algorithms

