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State of the art
A new algorithm

The new algorithm into practice

Problem
Compute the characteristic polynomial of a dense matrix
over a field

Result
Randomized Las-Vegas algorithm in O (nω) field operations for
large fields (#F > 2n2).

Improves previous complexity by a log n factor,
Optimal reduction to Matrix multiplication.

Practical efficiency. E.g. over Z547 909:

n 500 5000 15 000
LinBox 0.91s 4m44s 2h20m

magma-2.13 1.27s 15m32s 7h28m
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State of the art
A new algorithm

The new algorithm into practice

Pre-Strassen age

Leverrier 1840: trace of powers of A, and Newton’s formula
improved/rediscovered by Souriau, Faddeev,
Frame and Csanky
O
(
n4), based on Matrix multiplication

Suited for parallel computation model

Danilevskii 1937: elementary row/column operations
⇒O

(
n3)

Hessenberg 1942: transformation to quasi-upper triangular
and determinant expansion formula.
⇒O

(
n3)

C. PERNET and A. STORJOHANN Faster algorithms for the characteristic polynomial



State of the art
A new algorithm

The new algorithm into practice

Pre-Strassen age

Leverrier 1840: trace of powers of A, and Newton’s formula
improved/rediscovered by Souriau, Faddeev,
Frame and Csanky
O
(
n4), based on Matrix multiplication

Suited for parallel computation model
Danilevskii 1937: elementary row/column operations

⇒O
(
n3)

Hessenberg 1942: transformation to quasi-upper triangular
and determinant expansion formula.
⇒O

(
n3)

C. PERNET and A. STORJOHANN Faster algorithms for the characteristic polynomial



State of the art
A new algorithm

The new algorithm into practice

Pre-Strassen age

Leverrier 1840: trace of powers of A, and Newton’s formula
improved/rediscovered by Souriau, Faddeev,
Frame and Csanky
O
(
n4), based on Matrix multiplication

Suited for parallel computation model
Danilevskii 1937: elementary row/column operations

⇒O
(
n3)

Hessenberg 1942: transformation to quasi-upper triangular
and determinant expansion formula.
⇒O

(
n3)

C. PERNET and A. STORJOHANN Faster algorithms for the characteristic polynomial



State of the art
A new algorithm

The new algorithm into practice

Post-Strassen age

Preparata & Sarwate 1978: Update Csanky with fast matrix
multiplication
⇒O

(
nω+1)

Keller-Gehrig 1985, alg.1: computes (A2i
)i=1... log2 n to form a

Krylov basis.

O (nω log n)
the best complexity up to now

Keller-Gehrig 1985, alg.2: inspired by Danilevskii, block
operations
O (nω)
but only valid with generic matrices

C. PERNET and A. STORJOHANN Faster algorithms for the characteristic polynomial



State of the art
A new algorithm

The new algorithm into practice

Post-Strassen age

Preparata & Sarwate 1978: Update Csanky with fast matrix
multiplication
⇒O

(
nω+1)

Keller-Gehrig 1985, alg.1: computes (A2i
)i=1... log2 n to form a

Krylov basis.

O (nω log n)
the best complexity up to now

Keller-Gehrig 1985, alg.2: inspired by Danilevskii, block
operations
O (nω)
but only valid with generic matrices

C. PERNET and A. STORJOHANN Faster algorithms for the characteristic polynomial



State of the art
A new algorithm

The new algorithm into practice

Post-Strassen age

Preparata & Sarwate 1978: Update Csanky with fast matrix
multiplication
⇒O

(
nω+1)

Keller-Gehrig 1985, alg.1: computes (A2i
)i=1... log2 n to form a

Krylov basis.

O (nω log n)
the best complexity up to now

Keller-Gehrig 1985, alg.2: inspired by Danilevskii, block
operations
O (nω)
but only valid with generic matrices

C. PERNET and A. STORJOHANN Faster algorithms for the characteristic polynomial



State of the art
A new algorithm

The new algorithm into practice

Shifted forms
Principle of the new algorithm
Complexity

Outline

1 State of the art

2 A new algorithm
Shifted forms
Principle of the new algorithm
Complexity

3 The new algorithm into practice

C. PERNET and A. STORJOHANN Faster algorithms for the characteristic polynomial



State of the art
A new algorithm

The new algorithm into practice

Shifted forms
Principle of the new algorithm
Complexity

Definition (degree d Krylov matrix of one vector v )

K =
[
v Av . . . Ad−1v

]
Property

A× K = K ×

26664
0 ∗
1 ∗

. . . ∗
1 ∗

37775
| {z }

C
PA,v

min

⇒if d = n,
K−1AK = CPA

car

[Keller-Gehrig, alg. 2] : K−1AK in O (nω) for A generic
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Definition (degree k Krylov matrix of several vectors vi )

K =
[

v1 . . . Ak−1v1 v2 . . . Ak−1v2 . . . vl . . . Ak−1vl
]

Property

0

1

1

0

1

1

0

1

1

k ≤ k

A× K = K×

k
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Fact (Shift Hessenberg form)

If (d1, . . . dl) is lexicographically maximal such that

K =
[

v1 . . . Ad1−1v1 . . . vl . . . Adl−1vl
]

is non-singular, then

0

1

1

0

1

1

1

0

1

A× K = K×

d2d1 dl
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Principle

k -shifted form:

1

0

1

0

1

1

0

1

1

k k ≤ k
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Principle

k + 1-shifted form:

1

0

1

1

1

0

1

1

0

k + 1 k + 1 dl
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Principle

Compute iteratively from 1-shifted form to d1-shifted form

each completed block appears in the increasing degree
order
until the shifted Hessenberg form is obtained:

0

1

1

0

1

1

1

0

1

d2d1 dl
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Lemma

If #F > 2n2, the transformation will succeed with high
probability. Failure is detected.

How to use fast matrix arithmetic ?
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Permutations: compressing the dense columns

0

1

1

0

1

1

1

0

1

0

1

1

×PAk = = Q×c2
c3c3c1

c1 c2

1

1

1

1

1

1

1

1

0

×P′K = = Q′× c2c1c2c1
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Reduction to Matrix multiplication

Similarity transformation:

K−1AK = Q′T
[

I ∗
0 ∗

]
P ′T Q

[
I ∗
0 ∗

]
PQ′

[
I ∗
0 ∗

]
P ′

⇒O
(
k
(n

k

)ω)
Rank profile: derived from LQUP

⇒O
(
k
(n

k

)ω)
n∑

k=1

k
(n

k

)ω

= nω
n∑

k=1

1
kω−1 = O (nω)
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A new type of reduction

xIn − A

det(xIn − A)

dimension = 1
degree = n

degree = 1
dimension = n

Keller-Gehrig 2

1

1

0

1

1

0 dimension = n
2i

degree = 2i

New algorithm

1

0

1

0

1

0

1

0

1

1

0

1

1

0

0

1

dimension = n
k

degree = k
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Improving the preconditioning

The preconditioning phase:

A← U−1AU

for a random matrix U.

(reminds [Kaltofen, Krish-
namoorthy, Saunders 87])

Instead, use a block Krylov precon-
ditioning:

A← V−1AV ,

V =
[
W AW . . . Ac−1W

]
for a random n × n/c matrix W .

Property

V−1AV is in c shifted form.
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Efficiency balancing parameter

c small: full square matrix multiplications, but more ops
c large: tends to matrix-vector products, but less ops

⇒parameter c balances efficiency

 120
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Preconditionning parameter c

Finding the optimal preconditionning paramater, n=5000

1 block of order 5000
5 blocks of order 1000
10 blocks of order 500
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Experiments

n LU-Krylov New algorithm
200 0.024 0.032
300 0.06s 0.088s
500 0.248s 0.316s
750 1.084s 1.288s

1000 2.42s 2.296s
5000 267.6s 153.9s

10 000 1827s 991s
20 000 14 652s 7097s
30 000 48 887s 24 928s

Computation time for 1 Frobenius block matrices, Itanium2-64 1.3Ghz, 192Gb
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Comparison to Magma and previous LinBox

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0  2000  4000  6000  8000  10000  12000  14000  16000

T
im

e 
(s

)

Matrix order

Comparison for 1 frobenius block matrices

Magma 2.13
LU−Krylov

New algorithm

C. PERNET and A. STORJOHANN Faster algorithms for the characteristic polynomial



State of the art
A new algorithm

The new algorithm into practice

Conclusion and perspectives

Results:

Las Vegas reduction to matrix multiplication,
The Frobenius normal form is easily derivable in O (nω)...
...but no transformation matrix
Adaptive combination with block Krylov in practice.

Still to be done:

Condition on the size of the field is a limitation. Eberly’s
algorithm ?
Ideally: derandomization ? (deterministic)
Unification with matrix polynomial algorithms
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