High Performance and Reliable Algebraic Computing Soutenance d'habilitation à diriger des recherches

Clément Pernet

Université Joseph Fourier (Grenoble 1)

November 25, 2014

Rapporteurs : Daniel Augot, Examinateurs : Jean-Guillaume Dumas, Mark Giesbrecht, Laura Grigori, Erich L. Kaltofen, Brigitte Plateau.

Computer Algebra

Computing exactly over $\mathbb{Z}, \mathbb{Q}, \mathbb{Z}/p\mathbb{Z}, \mathsf{GF}(q), \mathsf{K}[X].$

- Symbolic manipulations.
- Applications where all digits matter:

- breaking Discrete Log Pb. in quasi-polynomial time [Barbulescu & al. 14],
- building modular form databases to test the BSD conjecture [Stein 12],
- formal verification of Hales' proof of Kepler conjecture [Hales 05].

Computer Algebra

Computing exactly over $\mathbb{Z}, \mathbb{Q}, \mathbb{Z}/p\mathbb{Z}, \mathsf{GF}(q), \mathsf{K}[X].$

- Symbolic manipulations.
- Applications where all digits matter:

- breaking Discrete Log Pb. in quasi-polynomial time [Barbulescu & al. 14],
- building modular form databases to test the BSD conjecture [Stein 12],
- formal verification of Hales' proof of Kepler conjecture [Hales 05].

Efficiency mostly rely on linear algebra over \mathbb{Z} and $\mathbb{Z}/p\mathbb{Z}$.

Coding theory

Protecting information against alteration:

- deep space communication,
- data storage,
- fault tolerance of large scale computations.

Coding theory

Protecting information against alteration:

- deep space communication,
- data storage,
- Fault tolerance of large scale computations.

Numerical linear algebra

Computing fast with approximations:

- delivering flops to most scientific computations for over 60 years,
- LinPack: benchmark for the top 500 supercomputers,
- impacts nowadays computer architectures.

[Wiedemann 86]: sparse linear system solving over \mathbb{F}_q

[Wiedemann 86]: sparse linear system solving over \mathbb{F}_q [Chowdhury & al. 14]: fast list decoding of Reed-Solomon codes

[Wiedemann 86]: sparse linear system solving over \mathbb{F}_q [Chowdhury & al. 14]: fast list decoding of Reed-Solomon codes [Huang and Abraham 84]: Algorithm Based Fault Tolerance (ABFT)

Contributions:

design of high performance linear algebra kernels,

Contributions:

- design of high performance linear algebra kernels,
- fault tolerant computer algebra.

Outline

Design of High Performance Exact Linear Algebra Kernels

- Matrix multiplication
- Gaussian elimination
- Rank profiles
- Characteristic polynomial

2 Coding Theory for Fault Tolerant Computer Algebra

- Approximation problems
- Dense polynomial evaluation codes
- Rational function codes
- Sparse evaluation codes

Outline

Design of High Performance Exact Linear Algebra Kernels

- Matrix multiplication
- Gaussian elimination
- Rank profiles
- Characteristic polynomial

2 Coding Theory for Fault Tolerant Computer Algebra

- Approximation problems
- Dense polynomial evaluation codes
- Rational function codes
- Sparse evaluation codes

Reductions: linear algebra's arithmetic complexity

< 1969: $O(n^3)$ for everyone (Gauss, Householder, Danilevskii, etc)

Reductions: linear algebra's arithmetic complexity

< 1969: $O(n^3)$ for everyone (Gauss, Householder, Danilevskii, etc)

Reductions: linear algebra's arithmetic complexity

< 1969: $O(n^3)$ for everyone (Gauss, Householder, Danilevskii, etc)

Matrix Product		1	
[Strassen 69]:	$O(n^{2.807})$		
		Other operations	
:	O(-2.52)	[Strassen 69]:	nverse in $O(n^{\omega})$
[Schonnage 81]	$O(n^{2})$	[Schönhage 72]:	$QR \text{ in } O(n^\omega)$
÷		[Bunch, Hopcroft 74]:	LU in $O(n^{\omega})$
[Coppersmith, Winograd 9	0] $O(n^{2.375})$	[lbarra & <i>al.</i> 82]:	Rank in $O(n^{\omega})$
	0 (2 2728630)	[Keller-Gehrig 85]: Ch	arPoly in $O(n^{\omega} \log n)$
[Le Gall 14]	$O(n^{2.3728039})$		
$\rightsquigarrow MM(n) = O(n^\omega)$			
C. Pernet (Habilitation defense)	High Perf. and Reliable /	Algebraic Computing Nove	mber 25, 2014 8 / 39

Reductions

Reductions

Reductions

Common mistrust

Fast linear algebra is

- 🗡 never faster
- X numerically unstable

Common mistrust

Fast linear algebra is

- 🗡 never faster
- × numerically unstable

Lucky coincidence

- building blocks in theory happen to be the most efficient routines in practice
- \rightsquigarrow reduction trees are still relevant

Common mistrust

Fast linear algebra is

- 🗡 never faster
- × numerically unstable

Lucky coincidence

- building blocks in theory happen to be the most efficient routines in practice
- \rightsquigarrow reduction trees are still relevant

Roadmap

- Tune building blocks
- Improve existing reductions
 - leading constants
 - memory footprint
- Produce new reduction schemes

(MatMul) (LU, Echelon)

(CharPoly, Rank Profiles)

ANR HPAC project:

- efficient kernels for exact linear algebra on SMP
- OSL, runtime as a plugin and composition
- attacking large scale challenges from cryptography

ANR HPAC project:

Ziad Sultan PhD. Thesis

- efficient kernels for exact linear algebra on SMP
- OSL, runtime as a plugin and composition
- attacking large scale challenges from cryptography

ANR HPAC project:

Ziad Sultan PhD. Thesis

- **1** efficient kernels for exact linear algebra on SMP
- OSL, runtime as a plugin and composition
- attacking large scale challenges from cryptography

ANR HPAC project:

Ziad Sultan PhD. Thesis

11 / 39

- efficient kernels for exact linear algebra on SMP
- OSL, runtime as a plugin and composition
- attacking large scale challenges from cryptography

Parallel numerical linear algebra

- cost invariant wrt. splitting
 - $\triangleright O(n^3)$
 - \rightsquigarrow fine grain
 - → block iterative algorithms
- regular task load
- Numerical stability constraints

ANR HPAC project:

Ziad Sultan PhD. Thesis

- **1** efficient kernels for exact linear algebra on SMP
- OSL, runtime as a plugin and composition
- attacking large scale challenges from cryptography

Parallel numerical linear algebra

- ▶ cost invariant wrt. splitting
 ▶ O(n³)
 - \rightarrow fine grain
 - \rightsquigarrow block iterative algorithms
- regular task load
- Numerical stability constraints

Exact linear algebra specificities

- cost affected by the splitting
 - $\triangleright \ O(n^{\omega}) \text{ for } w < 3$
 - modular reductions
 - \rightsquigarrow coarse grain
 - \rightsquigarrow recursive algorithms
- ► rank deficiencies ~→ unbalanced task loads

ANR HPAC project:

Ziad Sultan PhD. Thesis

- **1** efficient kernels for exact linear algebra on SMP
- OSL, runtime as a plugin and composition
- attacking large scale challenges from cryptography

Parallel numerical linear algebra

- ▶ cost invariant wrt. splitting
 ▶ O(n³)
 - , fino grain
 - \rightsquigarrow fine grain
 - → block iterative algorithms
- regular task load
- Numerical stability constraints

Exact linear algebra specificities

- cost affected by the splitting
 - $\triangleright \ O(n^{\omega}) \text{ for } w < 3$
 - modular reductions
 - \rightsquigarrow coarse grain
 - \rightsquigarrow recursive algorithms
- ► rank deficiencies ~→ unbalanced task loads

[Broquedis, Danjean and Gautier 12]: libkomp based on XKaapi

Ingedients [Dumas, Gautier and P. 02]

 \blacktriangleright Compute over $\mathbb Z$ and delay modular reductions

$$\rightsquigarrow k\left(\frac{p-1}{2}\right)^2 < 2^{\text{mantissa}}$$

Ingedients [Dumas, Gautier and P. 02]

• Compute over $\mathbb Z$ and delay modular reductions

$$\rightsquigarrow k\left(\frac{p-1}{2}\right)^2 < 2^{\text{mantissa}}$$

- Fastest integer arithmetic: double, float (SIMD and pipeline)
- Cache optimizations

 \rightsquigarrow numerical BLAS

Ingedients [Dumas, Gautier and P. 02]

• Compute over $\mathbb Z$ and delay modular reductions

$$\rightsquigarrow 9^\ell \left\lfloor \tfrac{k}{2^\ell} \right\rfloor \left(\tfrac{p-1}{2} \right)^2 < 2^{\mathsf{mantissa}}$$

- Fastest integer arithmetic: double, float (SIMD and pipeline)
- Cache optimizations

 $\rightsquigarrow numerical \; \mathsf{BLAS}$

• Strassen-Winograd $6n^{2.807} + \dots$

Ingedients [Dumas, Gautier and P. 02]

 \blacktriangleright Compute over $\mathbb Z$ and delay modular reductions

$$\rightsquigarrow 9^\ell \left\lfloor \tfrac{k}{2^\ell} \right\rfloor \left(\tfrac{p-1}{2} \right)^2 < 2^{\mathsf{mantissa}}$$

- Fastest integer arithmetic: double, float (SIMD and pipeline)
- Cache optimizations

 \rightsquigarrow numerical BLAS

• Strassen-Winograd $6n^{2.807} + \dots$

Sequential Matrix Multiplication

Sequential Matrix Multiplication

 $p=83\text{,} \rightsquigarrow 1 \bmod /$ 10000 mul.

Sequential Matrix Multiplication

C. Pernet (Habilitation defense)
Sequential Matrix Multiplication

Parallel matrix multiplication

Dumas, Gautier, P. and Sultan 14

Parallel matrix multiplication

Dumas, Gautier, P. and Sultan 14

Parallel matrix multiplication

Dumas, Gautier, P. and Sultan 14

Gaussian elimination

Gaussian elimination

Gaussian elimination

Slab recursive FFLAS-FFPACK

Tile recursive FFLAS-FFPACK

Prefer recursive algorithms

Gaussian elimination

Gaussian elimination

Tile recursive FFLAS-FFPACK

- Prefer recursive algorithms
- Better data locality

C. Pernet (Habilitation defense) High Perf. and Reliable Algebraic Computing November 25, 2014

Dumas, Gautier, P. and Sultan 14 Comparing numerical efficiency (no modulo)

High Perf. and Reliable Algebraic Computing

Dumas, Gautier, P. and Sultan 14 Comparing numerical efficiency (no modulo)

Dumas, Gautier, P. and Sultan 14 Comparing numerical efficiency (no modulo)

Dumas, Gautier, P. and Sultan 14 Over the finite field $\mathbb{Z}/131071\mathbb{Z}$

C. Pernet (Habilitation defense)

High Perf. and Reliable Algebraic Computing

Dumas, Gautier, P. and Sultan 14 Over the finite field $\mathbb{Z}/131071\mathbb{Z}$

C. Pernet (Habilitation defense)

High Perf. and Reliable Algebraic Computing

```
Definition (Row Rank Profile: RowRP)

Given A \in K^{m \times n}, r = \operatorname{rank}(A).

informally: first r linearly independent rows

formally: lexico-minimal sub-sequence of (1, \dots, m) of r indices of

linearly independant rows.
```

Example

[1	1	0	0
1	0	0	0
0	1	0	0
0	0	1	0

```
Definition (Row Rank Profile: RowRP)

Given A \in K^{m \times n}, r = \operatorname{rank}(A).

informally: first r linearly independent rows

formally: lexico-minimal sub-sequence of (1, \ldots, m) of r indices of

linearly independant rows.
```

Example

 $\begin{vmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{vmatrix}$

Rank = 3
$RowRP=\{1,\!2,\!4\}$

Definition (Row Rank Profile: RowRP) Given $A \in K^{m \times n}$, $r = \operatorname{rank}(A)$. informally: first r linearly independent rows formally: lexico-minimal sub-sequence of $(1, \ldots, m)$ of r indices of linearly independant rows.

Example

 $\begin{vmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{vmatrix}$

Rank = 3
$RowRP = \{1, 2, 4\}$
$CoIRP = \{1,2,3\}$

```
Definition (Row Rank Profile: RowRP)

Given A \in K^{m \times n}, r = \operatorname{rank}(A).

informally: first r linearly independent rows

formally: lexico-minimal sub-sequence of (1, \ldots, m) of r indices of

linearly independant rows.
```

Example

Rank = 3
$RowRP = \{1, 2, 4\}$
$ColRP = \{1,2,3\} \rightarrow Generic ColRP.$

```
Definition (Row Rank Profile: RowRP)

Given A \in K^{m \times n}, r = \operatorname{rank}(A).

informally: first r linearly independent rows

formally: lexico-minimal sub-sequence of (1, \ldots, m) of r indices of

linearly independant rows.
```

Example

```
\begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}  Rank = 3
RowRP = \{1,2,4\}
ColRP = \{1,2,3\} \rightarrow Generic ColRP.
```

- Major invariant of a matrix (echelon form)
- Gröbner basis computations (Macaulay matrix) [Faugère 99, 02]
- Krylov methods

Computing rank profiles

Via Gaussian elimination revealing echelon forms:

- [Ibarra, Moran and Hui 82]
- [Keller-Gehrig 85]
- [Storjohann 00]
- [Jeannerod, P. and Storjohann 13]

Computing rank profiles

Via Gaussian elimination revealing echelon forms:

[Ibarra, Moran and Hui 82]

[Keller-Gehrig 85]

- [Storjohann 00]
- [Jeannerod, P. and Storjohann 13]

Lessons learned (or what we thought was necessary):

- treat rows in order
- exhaust all columns before considering the next row
- slab block splitting required (recursive or iterative)
 similar to partial pivoting

Pivot Search

Pivot's (i, j) position minimizes some pre-order:

Row order: any non-zero on the first non-zero row

Search	Row perm.	Col. perm.	RowRP	CoIRP	Tiles possible
Row order					

Pivot Search

Pivot's (i, j) position minimizes some pre-order:

Row/Col order: any non-zero on the first non-zero row/col

Search	Row perm.	Col. perm.	RowRP	CoIRP	Tiles possible
Row order Col. order					

Pivot Search

Pivot's (i, j) position minimizes some pre-order:

Row/Col order: any non-zero on the first non-zero row/col

Lex order: first non-zero on the first non-zero row

Search	Row perm.	Col. perm.	RowRP	CoIRP	Tiles possible
Row order Col. order					
Lexico.					

Pivot Search

Pivot's (i, j) position minimizes some pre-order:

Row/Col order: any non-zero on the first non-zero row/col

Lex/RevLex order: first non-zero on the first non-zero row/col

Search	Row perm.	Col. perm.	RowRP	CoIRP	Tiles possible
Row order Col. order					
Lexico.					
Rev. lex.					

Pivot Search

Pivot's (i, j) position minimizes some pre-order:

Row/Col order: any non-zero on the first non-zero row/col

Lex/RevLex order: first non-zero on the first non-zero row/col

Product order: first non-zero in the (i, j) leading sub-matrix

Search	Row perm.	Col. perm.	RowRP	CoIRP	Tiles possible
Row order Col. order					
Lexico.					
Rev. lex.					
Product					

Pivot Search

Pivot's (i, j) position minimizes some pre-order:

Row/Col order: any non-zero on the first non-zero row/col

Lex/RevLex order: first non-zero on the first non-zero row/col

Product order: first non-zero in the (i, j) leading sub-matrix

Permutation

Transpositions

Search	Row perm.	Col. perm.	RowRP	ColRP	Tiles possible
Row order Col. order	Transposition Transposition	Transposition Transposition	1	1	× ×
Lexico.	Transposition	Transposition	\checkmark		×
Rev. lex.	Transposition	Transposition		1	X
Product					

Pivot Search

Pivot's (i, j) position minimizes some pre-order:

Row/Col order: any non-zero on the first non-zero row/col

Lex/RevLex order: first non-zero on the first non-zero row/col

Product order: first non-zero in the (i, j) leading sub-matrix

Permutation

- Transpositions
- Cylcic Rotations

Search	Row perm.	Col. perm.	RowRP	CoIRP	Tiles possible
Row order Col. order	Transposition Transposition	Transposition Transposition	1	1	× ×
Lexico.	Transposition	Transposition	1		×
Rev. lex.	Transposition	Transposition		1	×
Product Product	Rotation Transposition	Transposition Rotation	~	√	√ √

C. Pernet (Habilitation defense) High Perf. and Reliable Algebraic Computing November 25, 2014

Pivot Search

Pivot's (i, j) position minimizes some pre-order:

Row/Col order: any non-zero on the first non-zero row/col

Lex/RevLex order: first non-zero on the first non-zero row/col

Product order: first non-zero in the (i, j) leading sub-matrix

Permutation

- Transpositions
- Cylcic Rotations

Search	Row perm.	Col. perm.	RowRP	ColRP	All RPs	Tiles possible	
Row order Col. order	Transposition Transposition	Transposition Transposition	1	1		x x	
Lexico.	Transposition	Transposition	1			×	
Rev. lex.	Transposition	Transposition		1		×	
Product	Rotation	Transposition	1			1	
Product	Transposition	Rotation		\checkmark		\checkmark	
Product	Rotation	Rotation	1	1	 Image: A second s	1	
C. Pernet (Hab	C. Pernet (Habilitation defense) High Perf. and Reliable Algebraic Computing November 25, 2014 19 / 39						

Pivot Search

Pivot's (i, j) position minimizes some pre-order:

Row/Col order: any non-zero on the first non-zero row/col

Lex/RevLex order: first non-zero on the first non-zero row/col

Product order: first non-zero in the (i, j) leading sub-matrix

Permutation

- Transpositions
- Cylcic Rotations

Search	Row perm.	Col. perm.	RowRP	ColRP	All RPs	Tiles possible	
Row order Col. order	Transposition Transposition	Transposition Transposition	1	1		x x	
Lexico. Lexico.	Transposition Transposition	Transposition Rotation	\ \	1	1	× ×	
Rev. lex. Rev. lex.	Transposition Rotation	Transposition Transposition	~	\$ \$	1	× ×	
Product Product Product	Rotation Transposition Rotation	Transposition Rotation Rotation	\$ \$	\$ \$	1	5 5 5	
C. Pernet (Hab	ilitation defense)	High Perf. and Reliable Algebraic Computing			November 25, 2014 19 / 39		

Pivot Search

Pivot's (i, j) position minimizes some pre-order:

Row/Col order: any non-zero on the first non-zero row/col

Lex/RevLex order: first non-zero on the first non-zero row/col

Product order: first non-zero in the (i, j) leading sub-matrix

Permutation

- Transpositions
- Cylcic Rotations

Search	Row perm.	Col. perm.	RowRP	ColRP	All RPs	Tiles possible
Row order Col. order	Transposition Transposition	Transposition Transposition		1		× ×
Lexico. Lexico.	Transposition Transposition	Transposition Rotation		1	1	× ×
Rev. lex. Rev. lex.	Transposition Rotation	Transposition Transposition	1	\$ \$	1	× ×
Product Product Product	Rotation Transposition Rotation	Transposition Rotation Rotation	\ \	\$ \$	1	\ \ \
C. Pernet (Hat	ble Algebraic Computing		November	25, 2014 19 / 39		

Dumas, P. and Sultan 13

Definition (Rank Profile matrix)

The unique $\mathcal{R}_A \in \{0,1\}^{m \times n}$ such that any pair of (i, j)-leading sub-matrix of \mathcal{R}_A and of A have the same rank.

Dumas, P. and Sultan 13

Definition (Rank Profile matrix)

The unique $\mathcal{R}_A \in \{0, 1\}^{m \times n}$ such that any pair of (i, j)-leading sub-matrix of \mathcal{R}_A and of A have the same rank.

Theorem

- RowRP and CoIRP read directly on $\mathcal{R}(A)$
- ► Same holds for any (*i*, *j*)-leading submatrix.

Dumas, P. and Sultan 13

Definition (Rank Profile matrix)

The unique $\mathcal{R}_A \in \{0, 1\}^{m \times n}$ such that any pair of (i, j)-leading sub-matrix of \mathcal{R}_A and of A have the same rank.

Theorem

- RowRP and CoIRP read directly on $\mathcal{R}(A)$
- ► Same holds for any (*i*, *j*)-leading submatrix.

Dumas, P. and Sultan 13

Definition (Rank Profile matrix)

The unique $\mathcal{R}_A \in \{0,1\}^{m \times n}$ such that any pair of (i, j)-leading sub-matrix of \mathcal{R}_A and of A have the same rank.

Theorem

- RowRP and CoIRP read directly on $\mathcal{R}(A)$
- ► Same holds for any (*i*, *j*)-leading submatrix.

Computing all rank profiles at once

Dumas, P. and Sultan 13

Definition (Rank Profile matrix)

The unique $\mathcal{R}_A \in \{0,1\}^{m \times n}$ such that any pair of (i, j)-leading sub-matrix of \mathcal{R}_A and of A have the same rank.

Theorem

- RowRP and CoIRP read directly on $\mathcal{R}(A)$
- ► Same holds for any (*i*, *j*)-leading submatrix.

$$A = PLUQ = P \begin{bmatrix} L & 0 \\ M & I_{m-r} \end{bmatrix} \begin{bmatrix} I_r & \\ & 0 \end{bmatrix}$$

Computing all rank profiles at once

Dumas, P. and Sultan 13

Definition (Rank Profile matrix)

The unique $\mathcal{R}_A \in \{0,1\}^{m \times n}$ such that any pair of (i, j)-leading sub-matrix of \mathcal{R}_A and of A have the same rank.

Theorem $\begin{array}{c} \text{ RowRP and ColRP read directly on } \mathcal{R}(A) \\ \text{ Same holds for any } (i,j) \text{-leading submatrix.} \end{array} \xrightarrow{A} \begin{array}{c} \mathcal{R} \\ 1 & 2 & 3 & 4 \\ 2 & 4 & 5 & 8 \\ 1 & 2 & 3 & 4 \\ 3 & 5 & 9 & 12 \end{array} \xrightarrow{\left[\begin{array}{c} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right]} \\ \text{RowRP} = \{1,4\} \\ \text{ColRP} = \{1,2\} \\ A = PLUQ = P \begin{bmatrix} L & 0 \\ M & I_{m-r} \end{bmatrix} P^T P \begin{bmatrix} I_r \\ 0 \end{bmatrix} Q Q^T \begin{bmatrix} U & V \\ I_{n-r} \end{bmatrix} Q$

🔋 Dumas, P. and Sultan 13

Definition (Rank Profile matrix)

The unique $\mathcal{R}_A \in \{0, 1\}^{m \times n}$ such that any pair of (i, j)-leading sub-matrix of \mathcal{R}_A and of A have the same rank.

Theorem

- RowRP and CoIRP read directly on $\mathcal{R}(A)$
- ► Same holds for any (*i*, *j*)-leading submatrix.

$$A = PLUQ = \underbrace{P \begin{bmatrix} L & 0 \\ M & I_{m-r} \end{bmatrix} P^{T}}_{\overline{L}} \underbrace{P \begin{bmatrix} I_{r} \\ 0 \end{bmatrix} Q}_{\Pi_{P,Q}} \underbrace{Q^{T} \begin{bmatrix} U & V \\ I_{n-r} \end{bmatrix} Q}_{\overline{U}}$$

R

8

(1 4)
Computing all rank profiles at once

🔋 Dumas, P. and Sultan 13

Definition (Rank Profile matrix)

The unique $\mathcal{R}_A \in \{0, 1\}^{m \times n}$ such that any pair of (i, j)-leading sub-matrix of \mathcal{R}_A and of A have the same rank.

Theorem

• RowRP and CoIRP read directly on
$$\mathcal{R}(A)$$

► Same holds for any (*i*, *j*)-leading submatrix.

$$A = PLUQ = \underbrace{P \begin{bmatrix} L & 0 \\ M & I_{m-r} \end{bmatrix} P^{T}}_{\overline{L}} \underbrace{P \begin{bmatrix} I_{r} \\ 0 \end{bmatrix}}_{\Pi_{P,Q}} \underbrace{Q^{T} \begin{bmatrix} U & V \\ I_{n-r} \end{bmatrix}}_{\overline{U}} \underbrace{Q}_{\overline{U}}$$

With appropriate pivoting:
$$\Pi_{P,Q} = \mathcal{R}(A)$$

 $RowRP = \{1,4\}$

R

 2×2 block splitting

Dumas, P. and Sultan 13

Recursive call

Dumas, P. and Sultan 13

 $\texttt{TRSM:} \ B \leftarrow BU^{-1}$

Dumas, P. and Sultan 13

 $\texttt{TRSM:} \ B \leftarrow L^{-1}B$

Dumas, P. and Sultan 13

Dumas, P. and Sultan 13

Dumas, P. and Sultan 13

Dumas, P. and Sultan 13

2 independent recursive calls

Dumas, P. and Sultan 13

 $\texttt{TRSM:} \ B \leftarrow BU^{-1}$

Dumas, P. and Sultan 13

 $\texttt{TRSM:} \ B \leftarrow L^{-1}B$

Dumas, P. and Sultan 13

Dumas, P. and Sultan 13

Dumas, P. and Sultan 13

Dumas, P. and Sultan 13

Recursive call

Dumas, P. and Sultan 13

Puzzle game (block cyclic rotations)

🔋 Dumas, P. and Sultan 13

- $O(mnr^{\omega-2})$ (degenerating to $2/3n^3$)
- computing col. and row rank profiles of all leading sub-matrices
- fewer modular reductions than slab algorithms
- rank deficiency introduces parallelism

C. Pernet (Habilitation defense) High Perf. and Reliable Algebraic Computing

Computing the characteristic polynomial

Motivation

- Connection with the Frobenius normal form
- Krylov methods at large
- Graph invariants
- Crucial step in modular form computations

The last missing reduction

[Giesbrecht 93] Frobenius form, Las-Vegas probabilistic	$O(n^{\omega} \log n)$ $O(n^{3} \# inv factors)$
[Augot, Camion 94] Frobenius form, deterministic	$O(n^3 \# { m inv} { m factors})$

- From k to k + 1-shifted in $O(n(\frac{n}{k})^{\omega-1})$
- Compute iteratively from a 1-shifted form
- Invariant factors appear by increasing degree

- From k to k + 1-shifted in $O(n(\frac{n}{k})^{\omega-1})$
- Compute iteratively from a 1-shifted form
- Invariant factors appear by increasing degree
- Until the Hessenberg polycyclic form

- From k to k + 1-shifted in $O(n(\frac{n}{k})^{\omega-1})$
- Compute iteratively from a 1-shifted form
- Invariant factors appear by increasing degree
- Until the Hessenberg polycyclic form

$$n^{\omega} \sum_{k=1}^{n} \left(\frac{1}{k}\right)^{\omega-1} \le \zeta(\omega-1)n^{\omega} = O(n^{\omega})$$

- From k to k + 1-shifted in $O(n(\frac{n}{k})^{\omega-1})$
- Compute iteratively from a 1-shifted form
- Invariant factors appear by increasing degree
- Until the Hessenberg polycyclic form

$$n^{\omega} \sum_{k=1}^{n} \left(\frac{1}{k}\right)^{\omega-1} \le \zeta(\omega-1)n^{\omega} = O(n^{\omega})$$

Generalized to the Frobenius form as well
 Transformation matrix in O(n^ω log log n)

- From k to k + 1-shifted in $O(n(\frac{n}{k})^{\omega-1})$
- Compute iteratively from a 1-shifted form
- Invariant factors appear by increasing degree
- Until the Hessenberg polycyclic form

$$n^{\omega} \sum_{k=1}^{n} \left(\frac{1}{k}\right)^{\omega-1} \le \zeta(\omega-1)n^{\omega} = O(n^{\omega})$$

▶ Generalized to the Frobenius form as well
 ▶ Transformation matrix in O(n^ω log log n)

n	1000	2000	5000	10000
magma-v2.19-9	1.38s	24.28s	332.7s	2497s
fflas-ffpack	0.532s	2.936s	32.71s	219.2s

- From k to k + 1-shifted in $O(n(\frac{n}{k})^{\omega-1})$
- Compute iteratively from a 1-shifted form
- Invariant factors appear by increasing degree
- Until the Hessenberg polycyclic form

$$n^{\omega} \sum_{k=1}^{n} \left(\frac{1}{k}\right)^{\omega-1} \le \zeta(\omega-1)n^{\omega} = O(n^{\omega})$$

Generalized to the Frobenius form as well
 Transformation matrix in O(n^ω log log n)

 n
 1000
 2000
 5000
 10000
 ×7.5

 magma-v2.19-9
 1.38s
 24.28s
 332.7s
 2497s ×
 ×6.7

 fflas-ffpack
 0.532s
 2.936s
 32.71s
 219.2s
 ×6.7

C. Pernet (Habilitation defense)

High Perf. and Reliable Algebraic Computing

Outline

Design of High Performance Exact Linear Algebra Kernels

- Matrix multiplication
- Gaussian elimination
- Rank profiles
- Characteristic polynomial

2 Coding Theory for Fault Tolerant Computer Algebra

- Approximation problems
- Dense polynomial evaluation codes
- Rational function codes
- Sparse evaluation codes

24 / 39

Reliability of large scale distributed computing			
	Peak	Mean Time To Error	Mean Time To Failure
Blue Waters Tsubame 2	14 Pflops 2.3 Pflops	15min ?	pprox 1/2 day 15.8h
► Disk crash, hardware/software failures → ha			→ hard errors
 Bitflip in main or cache memory 			\rightsquigarrow soft/silent errors

Reliability of large scale distributed computing			
	Peak	Mean Time To Error	Mean Time To Failure
Blue Waters Tsubame 2	14 Pflops 2.3 Pflops	15min ?	pprox 1/2 day 15.8h
 Disk crash, hardware/software failures 			\rightsquigarrow hard errors
 Bitflip in main or cache memory 			\rightsquigarrow soft/silent errors

Reliability of large scale distributed computing	
--	--

	Peak	Mean Time To Error	Mean Time To Failure	
Blue Waters	14 Pflops	15min	pprox 1/2 day	
Tsubame 2	2.3 Pflops	?	15.8h	
 Disk crash, hardware/software failures 			\rightsquigarrow hard err	ors
 Bitflip in main or cache memory 			\rightsquigarrow soft/silent err	ors

Trust in outsourced computations (P2P, Cloud, Volunteer, etc)

Byzantine error model:

- a corrupted node is not always wrong
- black-listing is not an option

Reliability of large scale distributed computing

	Peak	Mean Time To Error	Mean Time To Failure	
Blue Waters	14 Pflops	15min	pprox 1/2 day	
Tsubame 2	2.3 Pflops	?	15.8h	
 Disk crash, hardware/software failures 			→ hard err	ors
 Bitflip in main or cache memory 			\rightsquigarrow soft/silent err	ors

Trust in outsourced computations (P2P, Cloud, Volunteer, etc)

Byzantine error model:

- a corrupted node is not always wrong
- black-listing is not an option

Algorithm Based Fault Tolerance:

exploit the algebraic specificity of the algorithm to embed redundancy.

ABFT using error correcting codes

ABFT using error correcting codes

 \rightsquigarrow Choice of the parallelization algorithm determines

- the communication channel
- the error model

C. Pernet (Habilitation defense)

High Perf. and Reliable Algebraic Computing

Evaluation-interpolation schemes

Polynomial evaluation

$$\begin{array}{cccc} \mathsf{Ev}_{(x_0,\dots,x_{n-1})} : & \mathsf{K}_{< n}[X] & \longrightarrow & \mathsf{K}^n \\ & f & \longmapsto & (f(x_0),\dots,f(x_{n-1})) \end{array}$$

for x_0,\dots,x_{n-1} distinct.

Evaluation-interpolation schemes

Polynomial evaluation

$$\begin{array}{cccc} \mathsf{Ev}_{(x_0,\dots,x_{n-1})}: & \mathsf{K}_{< n}[X] & \longrightarrow & \mathsf{K}^n \\ & f & \longmapsto & (f(x_0),\dots,f(x_{n-1})) \end{array}$$
for x_0,\dots,x_{n-1} distinct.

C. Pernet (Habilitation defense) High Perf. and Reliable Algebraic Computing Novemb

Evaluation-interpolation schemes

Chinese Remainder Theorem

for p_1, \ldots, p_n pairwise co-prime.

C. Pernet (Habilitation defense) High Perf. and Reliable Algebraic Computing November
$$x_i \in F$$
 $f ? f(x_i)$

Problem

Recover an unknown function f, given as a black-box, from its evaluations.

$$\underbrace{x_i \in F}_{f ?} \quad f ? \quad f(x_i) \quad f = \sum_{i=0}^{d_f} c_i X^i$$

Problem

Recover an unknown function f, given as a black-box, from its evaluations.

Additional knowledge on the model Dense polynomial: degree bound

$$\underbrace{x_i \in F}_{f ? f(x_i)} f = \sum_{i=1}^t c_i X^{d_i}$$

Problem

Recover an unknown function f, given as a black-box, from its evaluations.

Additional knowledge on the model

Dense polynomial: degree bound Sparse polynomial: support unknown, bound on sparsity

$$\underbrace{x_i \in F}_{g} ? \xrightarrow{\frac{f}{g}(x_i)} f = \sum_{i=0}^{d_f} f_i X^i, \ g = \sum_{i=0}^{d_g} g_i X^i$$

Problem

Recover an unknown function f, given as a black-box, from its evaluations.

Additional knowledge on the model

Dense polynomial: degree bound Sparse polynomial: support unknown, bound on sparsity Dense rational function: degree bounds

$$\underbrace{x_i \in F}_{f ?} \quad f(x_i) + e_i$$

Problem

Recover an unknown function f, given as a black-box, from its evaluations.

Additional knowledge on the model

Dense polynomial: degree bound Sparse polynomial: support unknown, bound on sparsity

Dense rational function: degree bounds

Trust in the evaluations

- errors (outliers)
- approximations: numerical noise

$$\underbrace{x_i \in F}_{f ?} \quad f(x_i) + e_i$$

Problem

Recover an unknown function f, given as a black-box, from its evaluations.

Additional knowledge on the model

Dense polynomial: degree bound Sparse polynomial: support unknown, bound on sparsity

Dense rational function: degree bounds

Trust in the evaluations

- errors (outliers)
- approximations: numerical noise

Rational function reconstruction

Problem (RFR: Rational Function Reconstruction)

Given $A, B \in \mathsf{K}[X]$ with $\deg B < \deg A = n$, Find $f \in \mathsf{K}_{\leq d_f}[X]$, $g \in \mathsf{K}_{\leq n-d_f-1}[X]$ such that

 $f = gB \mod A.$

Fact

The Extended Euclidean Algo. run on (A, B) and terminated when $\deg f_j \leq d_f < \deg f_{j-1}$, produces $f_j = u_j A + v_j B$ s.t.

- **1** (f_j, v_j) is a solution to the RFR problem.
- **2** it is minimal: any other solution (f,g) is of the form

$$f = qf_j, \quad g = qv_j \quad \text{for } q \in \mathsf{K}[X].$$

Dense polynomial interpolation

$$\underbrace{x_i \in F}_{f ?} \quad f ? \quad f(x_i) \quad f = \sum_{i=0}^{d_f} c_i X^i$$

without error: polynomial interpolation (Lagrange, Newton, etc).

Dense polynomial interpolation with errors

$$\underbrace{x_i \in F}_{f : i \in I} \quad f : \underbrace{f(x_i) + e_i = y_i}_{f : i \in I} \quad f = \sum_{i=0}^{d_f} c_i X^i$$

without error: polynomial interpolation (Lagrange, Newton, etc). with errors: Reed-Solomon decoding

- Erroneous interpolant: $h = \text{Interp}((y_i, x_i))$
- Error locator polynomial: $\Lambda = \prod_{e_i \neq 0} (X x_i)$

$$\Lambda f = \Lambda h \mod \prod_{i=0}^{n-1} (X - x_i)$$

Dense polynomial interpolation with errors

$$\underbrace{x_i \in F}_{f} f ? \quad f(x_i) + e_i = y_i \qquad f = \sum_{i=0}^{d_f} c_i X^i$$

without error: polynomial interpolation (Lagrange, Newton, etc). with errors: Reed-Solomon decoding

- Erroneous interpolant: $h = \text{Interp}((y_i, x_i))$
- Error locator polynomial: $\Lambda = \prod_{e_i \neq 0} (X x_i)$

$$\underbrace{\Lambda f}_{N} = \underbrace{\Lambda}_{D} h \mod \prod_{i=0}^{n-1} (X - x_i)$$

Rational Reconstruction Problem:

 $(\Lambda f, \Lambda)$ is a minimal solution \rightsquigarrow computed by Ext. Euclidean Algorithm

$$f = f_j / v_j.$$

Correction capacity

Unique decoding of t errors whenever:

$$n \geq \deg f + 2E + 1$$

Bounding the degree

deg f rarely known a priori;

bound $d_f \geq \deg f$ often pessimistic

• Early termination:

without errors: add evaluations until interpolant stabilizes with errors: no stabilization

Correction capacity

Unique decoding of t errors whenever:

Bounding the degree

- deg f rarely known a priori;
- Early termination:

without errors: add evaluations until interpolant stabilizes with errors: no stabilization

Parameter oblivious decoding

 $n \ge \deg f + 2E + 1$

bound $d_f \geq \deg f$ often pessimistic

Correction capacity

Unique decoding of t errors whenever:

Bounding the degree

- deg f rarely known a priori;
- Early termination:

without errors: add evaluations until interpolant stabilizes with errors: no stabilization

 $n \ge \deg f + 2E + 1$

bound $d_f \geq \deg f$ often pessimistic

Parameter oblivious decoding

Dense rational function interpolation with errors

$$\underline{x_i \in F} \qquad \underbrace{f}_{g} ? \qquad \underbrace{\frac{f}{g}(x_i) + e_i}_{D} f = \sum_{i=0}^{d_f} f_i X^i, \ g = \sum_{i=0}^{d_g} g_i X^i$$
$$\underbrace{\Lambda f}_{N} = \underbrace{\overline{\Lambda g}}_{D} h \mod \prod_{y_i \neq \infty} (X - x_i)$$

Rational Reconstruction Problem

 $(\Lambda f, \overline{\Lambda}\overline{g})$ is a minimal solution \rightsquigarrow computed by Ext. Euclidean Algorithm.

Dense rational function interpolation with errors

$$\underbrace{x_i \in F}_{g} ? \xrightarrow{\frac{f}{g}(x_i) + e_i}_{f} f = \sum_{i=0}^{d_f} f_i X^i, \ g = \sum_{i=0}^{d_g} g_i X^i$$
$$\underbrace{\Lambda f}_{N} = \underbrace{\overline{\Lambda g}}_{D} h \mod \prod_{y_i \neq \infty} (X - x_i)$$

Rational Reconstruction Problem

 $(\Lambda f, \overline{\Lambda}\overline{g})$ is a minimal solution \rightsquigarrow computed by Ext. Euclidean Algorithm.

Correction capacity

Unique decoding of E errors whenever

$$n \ge d_f + d_g + 2E + 1$$

- smoothly supports evaluations at poles (even erroneous ones)
- parameter oblivious decoding applies

Sparse interpolation

$$\underbrace{x_i \in F}_{f ? f(x_i)} f = \sum_{i=1}^t c_i X^{d_i}$$

Without error: [Prony 1795] [Ben-Or and Tiwari 88]

• sample in a geometric progression: $y_i = f(\alpha^i)$

Sparse interpolation

$$\underbrace{x_i \in F}_{f ? f(x_i)} f = \sum_{i=1}^t c_i X^{d_i}$$

Without error: [Prony 1795] [Ben-Or and Tiwari 88]

- sample in a geometric progression: $y_i = f(\alpha^i)$
- [Blahut'84]: the seq. $(y_0, y_1, ...)$ has linear complexity t
- ▶ and is generated by $\Lambda(X) = \prod_{i=1}^{t} (X \alpha^{d_i})$

 $\rightsquigarrow d_i$

 $\sim c_i$

- Berlekamp-Massey algo. on 2t terms
- Vandermonde system

Sparse interpolation with errors

$$\underbrace{x_i \in F}_{f : i \in I} f : \underbrace{f(x_i) + e_i}_{f : i \in I} f = \sum_{i=1}^t c_i X^{d_i}$$

Without error: [Prony 1795] [Ben-Or and Tiwari 88]

- sample in a geometric progression: $y_i = f(\alpha^i)$
- ▶ [Blahut'84]: the seq. $(y_0, y_1, ...)$ has linear complexity t
- and is generated by $\Lambda(X) = \prod_{i=1}^{t} (X \alpha^{d_i})$

 $\rightsquigarrow d_i$

 $\sim c_i$

- Berlekamp-Massey algo. on 2t terms
- Vandermonde system

With errors: rule of thumb:

• find a clean sub-sequence of 2t terms free of error

Comer, Kaltofen and P. 12

Necessary condition for unique decoding:

$$n \ge 2t(2E+1)$$

$$x = (\overbrace{\overline{0}}^{(t-1)zeros}, 1, \overline{0}, 1, \dots, \overline{0}, 1) \begin{vmatrix} \Lambda(z) \\ z^t - 1 \end{vmatrix} \frac{f(z)}{\frac{1}{t} \sum_{i=0}^{t-1} z^{2i\frac{m}{2t}}}$$

Necessary condition for unique decoding:

$$n \ge 2t(2E+1)$$

 $\begin{array}{c|c} (a_i) \\ x = (\overbrace{\overline{0}}^{(t-1)zeros}, 1, \overline{0}, 1, \ldots, \overline{0}, 1) \\ y = (\overbrace{\overline{0}}^{(t-1)zeros}, 1, \overline{0}, -1, \ldots, \overline{0}, -1) \end{array} \begin{vmatrix} \Lambda(z) \\ z^t - 1 \\ z^t + 1 \end{vmatrix} \begin{vmatrix} f(z) \\ \frac{1}{t} \sum_{i=0}^{t-1} z^{2i\frac{m}{2t}} \\ \frac{-1}{t} \sum_{i=0}^{t-1} z^{(2i+1)\frac{m}{2t}} \end{vmatrix}$

Necessary condition for unique decoding:

$$n \ge 2t(2E+1)$$

 $\begin{array}{c|ccccc} (a_i) & & & & & & \\ x = (& \overline{0} & , & 1, & \overline{0}, & 1, & \dots, & \overline{0}, & 1) \\ y = (& \overline{0} & , & 1, & \overline{0}, & -1, & \dots, & \overline{0}, & -1) \\ & & & & & & & \\ \end{array} \begin{vmatrix} \Lambda(z) & & f(z) \\ z^t - 1 & & & \\ \frac{1}{t} \sum_{i=0}^{t-1} z^{2i\frac{m}{2t}} \\ \frac{-1}{t} \sum_{i=0}^{t-1} z^{(2i+1)\frac{m}{2t}} \\ \frac{-1}{t} \sum_{i=0}^{t-1} z^{(2i+1)\frac{m}{2t}} \end{vmatrix}$

Necessary condition for unique decoding:

$$n \ge 2t(2E+1)$$

🚺 Kaltofen and P. 14

$f(\alpha^0)$	$f(\alpha^1)$	$f(\alpha^2)$	$f(\alpha^3)$	$f(\alpha^4)$	$f(\alpha^5)$	$f(\alpha^6)$	$f(\alpha^7)$	$f(\alpha^8)$		
$f(\alpha^0)$		$f(\alpha^2)$		$f(\alpha^4)$		$f(\alpha^6)$		$f(\alpha^8)$		
	$f(\alpha^1)$		$f(\alpha^3)$		$f(\alpha^5)$		$f(\alpha^7)$			
$\overline{f(\alpha^0)}$			$f(\alpha^3)$			$f(\alpha^6)$				
	$f(\alpha^1)$			$f(\alpha^4)$			$f(\alpha^7)$			
		$f(\alpha^2)$			$f(\alpha^5)$			$f(\alpha^8)$		

🚺 Kaltofen and P. 14

$f(\alpha^0)$	$f(\alpha^1)$	$f(\alpha^2)$	$f(\alpha^3)$	$f(\alpha^4)$	$f(\alpha^5)$	$f(\alpha^6)$	$f(\alpha^7)$	$f(\alpha^8)$	$= Ev(f, \alpha)$
$f(\alpha^0)$		$f(\alpha^2)$		$f(\alpha^4)$		$f(\alpha^6)$		$f(\alpha^8)$	$= Ev(f, \alpha^2)$
	$f(\alpha^1)$		$f(\alpha^3)$		$f(\alpha^5)$		$f(\alpha^7)$		$= Ev(f \circ (\alpha x), \alpha^2)$
$\overline{f(\alpha^0)}$			$f(\alpha^3)$			$f(\alpha^6)$			$= Ev(f, \alpha^3)$
	$f(\alpha^1)$			$f(\alpha^4)$			$f(\alpha^7)$		$= Ev(f \circ (\alpha x), \alpha^3)$
		$f(\alpha^2)$			$f(\alpha^5)$			$f(\alpha^8)$	$= Ev(f \circ (\alpha^2 x), \alpha^3)$

Kaltofen and P. 14

$f(\alpha^0)$	$f(\alpha^1)$	$f(\alpha^2)$	$f(\alpha^3)$	$f(\alpha^4)$	$f(\alpha^5)$	$f(\alpha^6)$	$f(\alpha^7)$	$f(\alpha^8)$	$= Ev(f, \alpha)$
$f(\alpha^0)$		$f(\alpha^2)$		$f(\alpha^4)$		$f(\alpha^6)$		$f(\alpha^8)$	$= Ev(f, \alpha^2)$
	$f(\alpha^1)$		$f(\alpha^3)$		$f(\alpha^5)$		$f(\alpha^7)$		$= Ev(f \circ (\alpha x), \alpha^2)$
$\overline{f(\alpha^0)}$			$f(\alpha^3)$			$f(\alpha^6)$			$= Ev(f, \alpha^3)$
	$f(\alpha^1)$			$f(\alpha^4)$			$f(\alpha^7)$		$= Ev(f \circ (\alpha x), \alpha^3)$
		$f(\alpha^2)$			$f(\alpha^5)$			$f(\alpha^8)$	$= Ev(f \circ (\alpha^2 x), \alpha^3)$

🚺 Kaltofen and P. 14

$f(\alpha^0)$	$f(\alpha^1)$	$f(\alpha^2)$	$f(\alpha^3)$	$f(\alpha^4)$	$f(\alpha^5)$	$f(\alpha^6)$	$f(\alpha^7)$	$f(\alpha^8)$	$= Ev(f, \alpha)$
$f(\alpha^0)$		$f(\alpha^2)$		$f(\alpha^4)$		$f(\alpha^6)$		$f(\alpha^8)$	$= Ev(f, \alpha^2)$
	$f(\alpha^1)$		$f(\alpha^3)$		$f(\alpha^5)$		$f(\alpha^7)$		$= Ev(f \circ (\alpha x), \alpha^2)$
$f(\alpha^0)$			$f(\alpha^3)$			$f(\alpha^6)$			$= Ev(f, \alpha^3)$
	$f(\alpha^1)$			$f(\alpha^4)$			$f(\alpha^7)$		$= Ev(f \circ (\alpha x), \alpha^3)$
		$f(\alpha^2)$			$f(\alpha^5)$			$f(\alpha^8)$	$= Ev(f \circ (\alpha^2 x), \alpha^3)$

Kaltofen and P. 14

C. Pernet (Habilitation defense)

High Perf. and Reliable Algebraic Computing

Kaltofen and P. 14

C. Pernet (Habilitation defense)

	$f(\alpha^0)$	$f(\alpha^1)$	$f(\alpha^2)$	$f(\alpha^3)$	$f(\alpha^4)$	$f(\alpha^5)$	$f(\alpha^6)$	$f(\alpha^7)$	$f(\alpha^8)$	$= Ev(f, \alpha)$			
	$f(\alpha^0)$		$f(\alpha^2)$		$f(\alpha^4)$		$f(\alpha^6)$		$f(\alpha^8)$	$= Ev(f, \alpha^2)$	-		
		$f(\alpha^1)$		$f(\alpha^3)$		$f(\alpha^5)$		$f(\alpha^7)$		$= Ev(f \circ (\alpha x), \alpha^2)$	_		
	$f(\alpha^0)$			$f(\alpha^3)$			$f(\alpha^6)$			$= Ev(f, \alpha^3)$			
		$f(\alpha^1)$			$f(\alpha^4)$			$f(\alpha^7)$		$= Ev(f \circ (\alpha x), \alpha^3)$			
			$f(\alpha^2)$			$f(\alpha^5)$			$f(\alpha^8)$	$= Ev(f \circ (\alpha^2 x), \alpha^3)$	1		
Prob	of success	, n =	100, k = 7			Difficult worst case analysis							
	0.8		-Uni clas - Aff.	que decodin sic list deco sub-seq. list	g ding dec.	 [Erdös and Turan 36]: size of the largest subset of {1n} not containing k terms in arithmetic progression 							
	0.4					▶ [Szeremedi 75]: arithmetic prog. are dense							
	0.2	0.2 0.4	0.6	0.8	= E/n	$n - \frac{n}{(\log \log n)^{1/2^{2^{k+9}}}} \le E \le \frac{n}{k-2} \log_k \frac{n}{k-2}.$							

High Perf. and Reliable Algebraic Computing

November 25, 2014

35 / 39

Towards better decoding capacities

Unique decoding:

List decoding (basic):

List decoding (affine subsequence):

$$n \geq 2t \tfrac{E}{\log E}$$

Towards better decoding capacities

- Unique decoding:
- List decoding (basic):
- List decoding (affine subsequence):

Improved conditions for unique decoding

Descartes' rule of signs: Over $K = \mathbb{R}_{>0}$: Irreducibility of cyclotomic polynomials:

• Over
$$K = \mathbb{C}$$
:

• Over
$$\mathbb{F}_q^{(p_1)} \times \cdots \times \mathbb{F}_q^{(p_n)}$$
:

$$n \ge 2t(2E+1)$$
$$n \ge 2t(E+1)$$
$$n \ge 2t\frac{E}{\log E}$$

$$n \ge 2t + 2E + 1$$

$$n \ge 2t \frac{\log \deg f}{\log 2t} + 2E + 1$$
$$n \ge 2t \frac{\log \deg f}{\log 2t} + 2E + 1$$

- No known decoding algorithm
- Makes the list decoding algo. a unique decoding one

C. Pernet (Habilitation defense)

High Perf. and Reliable Algebraic Computing

Design framework for high performance exact linear algebra Asymptotic reduction > algorithm tuning > building block implementation

- Favor **tiled recursive** algorithms
 - → architecture oblivious vs aware algorithms [Gustavson 07]

Design framework for high performance exact linear algebra

Asymptotic reduction > algorithm tuning > building block implementation

- Favor tiled recursive algorithms
 ~> architecture oblivious vs aware algorithms [Gustavson 07]
- ▶ New pivoting strategies revealing all rank profile informations \rightsquigarrow tournament pivoting? [Demmel, Grigori and Xiang 11] $\implies O(r^{\omega} + (m + n + |A|)^{1+o(n)})$? [Storjohann and Yang 14]

Design framework for high performance exact linear algebra

Asymptotic reduction > algorithm tuning > building block implementation

- Favor tiled recursive algorithms

 ~~~ architecture oblivious vs aware algorithms [Gustavson 07]
- ▶ New pivoting strategies revealing all rank profile informations \rightsquigarrow tournament pivoting? [Demmel, Grigori and Xiang 11] $\implies O(r^{\omega} + (m + n + |A|)^{1+o(n)})$? [Storjohann and Yang 14]
- Recursive tasks and coarse grain parallelization

 Light weight task workstealing management required (libkomp)

 Need for an improved recursive dataflow scheduling

Fault tolerance based on evaluation codes

- RS and CRT codes extended to rational fractions
 smooth generalization
- Sparse evaluation codes
 - \rightsquigarrow Gap between best correction radius and existing algorithm

Perspectives

Large scale distributed exact linear algebra

- reducing communications [Demmel, Grigori and Xiang 11]
- sparse and hybrid (Boyer and Vialla) [Faugère and Lachartre 10]
- combine genericity and efficiency to attack crypto. challenges

Perspectives

Large scale distributed exact linear algebra

- reducing communications [Demmel, Grigori and Xiang 11]
- sparse and hybrid (Boyer and Vialla) [Faugère and Lachartre 10]
- combine genericity and efficiency to attack crypto. challenges

Polynomial matrix arithmetic for coding theory

- State of the art implementations in LinBox [Giorgi and Lebreton 14]
- Coding theory tools in Sage (Lucas)
- Further joint developments
Perspectives

Large scale distributed exact linear algebra

- reducing communications [Demmel, Grigori and Xiang 11]
- sparse and hybrid (Boyer and Vialla) [Faugère and Lachartre 10]
- combine genericity and efficiency to attack crypto. challenges

Polynomial matrix arithmetic for coding theory

- State of the art implementations in LinBox [Giorgi and Lebreton 14]
- Coding theory tools in Sage (Lucas)
- Further joint developments

Symbolic-numeric computation

- smooth transition between noise and errors for sparse codes [Comer Kaltofen P. 12], [Kaltofen Yang 13-14]
 - \rightsquigarrow improve decoding capacities and efficiency
 - \rightsquigarrow extend to larger classes of codes
- High precision floating point linear algebra via exact rational arithmetic

Perspectives

Large scale distributed exact linear algebra

- reducing communications [Demmel, Grigori and Xiang 11]
- sparse and hybrid (Boyer and Vialla) [Faugère and Lachartre 10]
- combine genericity and efficiency to attack crypto. challenges

Polynomial matrix arithmetic for coding theory

- State of the art implementations in LinBox [Giorgi and Lebreton 14]
- Coding theory tools in Sage (Lucas)
- Further joint developments

Symbolic-numeric computation

- smooth transition between noise and errors for sparse codes [Comer Kaltofen P. 12], [Kaltofen Yang 13-14]
 - \rightsquigarrow improve decoding capacities and efficiency
 - \rightsquigarrow extend to larger classes of codes
- High precision floating point linear algebra via exact rational arithmetic

Thank you