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Introduction

Computer Algebra

Computing exactly over Z,Q,Z/pZ,GF(q),K[X].

I Symbolic manipulations.

I Applications where all digits matter:

• breaking Discrete Log Pb. in quasi-polynomial time [Barbulescu & al. 14],

• building modular form databases to test the BSD conjecture [Stein 12],

• formal verification of Hales’ proof of Kepler conjecture [Hales 05].

Efficiency mostly rely on linear algebra over Z and Z/pZ.
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Introduction

Coding theory

Protecting information against alteration:

I deep space communication,

I data storage,

I fault tolerance of large scale computations.

Numerical linear algebra

Computing fast with approximations:

I delivering flops to most scientific computations for
over 60 years,

I LinPack: benchmark for the top 500 supercomputers,

I impacts nowadays computer architectures.
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Interactions

[Giorgi, Jeannerod and Villard 03]

[Berlekamp 68, Massey 69]

Parity check, RS codes

Krylov methods

[Wiedemann 86]: sparse linear system solving over Fq
[Chowdhury & al. 14]: fast list decoding of Reed-Solomon codes

[Huang and Abraham 84]: Algorithm Based Fault Tolerance (ABFT)
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Interactions

Sparse codes

RS and CRT codes

BLAS, parallel algorithms

Contributions:

I design of high performance linear algebra kernels,

I fault tolerant computer algebra.
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Outline

1 Design of High Performance Exact Linear Algebra Kernels
Matrix multiplication
Gaussian elimination
Rank profiles
Characteristic polynomial

2 Coding Theory for Fault Tolerant Computer Algebra
Approximation problems
Dense polynomial evaluation codes
Rational function codes
Sparse evaluation codes
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Design of High Performance Exact Linear Algebra Kernels

Reductions: linear algebra’s arithmetic complexity

< 1969: O(n3) for everyone (Gauss, Householder, Danilevsk̆ıi, etc)

Matrix Product

[Strassen 69]: O(n2.807)

...

[Schönhage 81] O(n2.52)

...

[Coppersmith, Winograd 90] O(n2.375)

...

[Le Gall 14] O(n2.3728639)

 MM(n) = O(nω)

Other operations

[Strassen 69]: Inverse in O(nω)

[Schönhage 72]: QR in O(nω)

[Bunch, Hopcroft 74]: LU in O(nω)

[Ibarra & al. 82]: Rank in O(nω)

[Keller-Gehrig 85]: CharPoly in
O(nω log n)
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Design of High Performance Exact Linear Algebra Kernels

Reductions
HNF(Z)

Det(Z)

LinSys(Z)

MM(Z)

SNF(Z)

Det(Zp)

LU(Zp) CharPoly(Zp)

MinPoly(Zp)

TRSM(Zp)

MM(Zp)

LinSys(Zp)

[P. and Storjohann 07]

[Ibarra, Moran and Hui 82]

[Jeannerod, P. and Storjohann 13]

[Dumas, P. and Sultan 13]

[P. and Storjohann 07]

[P. and Stein 10]

[Abbott, Bronstein and Mulders 99]

[Storjohann 05]

[Storjohann 05]

[Storjohann 05]

CharPoly(Zp)

Rank(Zp)

MinPoly(Zp)

MatVecProd(Zp)

Det(Zp) LinSys(Zp)

MinPoly(Z)

CharPoly(Z)

[Dumas, P. Saunders 09]

[Chen & al. 02]

[Wiedemann 86]

[Kaltofen Saunders 91]

[Wiedemann 86]

[Chen & al. 02]

[Dumas, P. and Saunders 09]
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Design of High Performance Exact Linear Algebra Kernels

Making theoretical reductions effective

Common mistrust

Fast linear algebra is

7 never faster

7 numerically unstable

Lucky coincidence

3 building blocks in theory happen to be
the most efficient routines in practice

 reduction trees are still relevant

Roadmap

1 Tune building blocks (MatMul)
2 Improve existing reductions (LU, Echelon)

B leading constants
B memory footprint

3 Produce new reduction schemes (CharPoly, Rank Profiles)
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Design of High Performance Exact Linear Algebra Kernels

Design of parallel exact linear algebra

ANR HPAC project:

1 efficient kernels for exact linear algebra on SMP
2 DSL, runtime as a plugin and composition
3 attacking large scale challenges from cryptography

Parallel numerical linear algebra

I cost invariant wrt. splitting
B O(n3)

 fine grain
 block iterative algorithms

I regular task load

I Numerical stability constraints

Exact linear algebra specificities

I cost affected by the splitting
B O(nω) for w < 3
B modular reductions

 coarse grain
 recursive algorithms

I rank deficiencies
 unbalanced task loads

[Broquedis, Danjean and Gautier 12]: libkomp based on XKaapi
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Design of High Performance Exact Linear Algebra Kernels Matrix multiplication

Matrix Multiplication over Z/pZ

Ingedients [Dumas, Gautier and P. 02]

I Compute over Z and delay modular reductions

 k
(
p−1
2

)2
< 2mantissa

I Fastest integer arithmetic: double, float (SIMD and pipeline)

I Cache optimizations
 numerical BLAS

I Strassen-Winograd 6n2.807 + . . .

with memory efficient schedules [Boyer, Dumas, P. and Zhou 09]

Tradeoffs:
Extra memory

Overwriting input Leading constant

Fully in-place in

7.2n2.807 + . . .
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Design of High Performance Exact Linear Algebra Kernels Matrix multiplication

Sequential Matrix Multiplication

 0
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n
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matrix dimension

i5−3320M at 2.6Ghz with AVX 1

OpenBLAS sgemm

p = 83,  1 mod / 10000 mul.
p = 821,  1 mod / 100 mul.
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Design of High Performance Exact Linear Algebra Kernels Matrix multiplication

Parallel matrix multiplication

Dumas, Gautier, P. and Sultan 14

A1

A2

B1 B2

C11 C12

C21 C22

1st recursion cutting

2nd recursion cutting
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matrix dimension

pfgemm over Z/131071Z on a Xeon E5-4620 2.2Ghz 32 cores

MKL dgemm
PLASMA-QUARK dgemm
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Design of High Performance Exact Linear Algebra Kernels Gaussian elimination

Gaussian elimination

Slab iterative Slab recursive
LAPACK FFLAS-FFPACK

Tile iterative Tile recursive
PLASMA FFLAS-FFPACK

I Prefer recursive algorithms
I Better data locality
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Design of High Performance Exact Linear Algebra Kernels Gaussian elimination

Full rank Gaussian elimination

Dumas, Gautier, P. and Sultan 14
Comparing numerical efficiency (no modulo)
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Design of High Performance Exact Linear Algebra Kernels Rank profiles

Rank profiles

Definition (Row Rank Profile: RowRP)

Given A ∈ Km×n, r = rank(A).

informally: first r linearly independent rows

formally: lexico-minimal sub-sequence of (1, . . . ,m) of r indices of
linearly independant rows.

Example
1 1 0 0
1 0 0 0
0 1 0 0
0 0 1 0



Rank = 3
RowRP = {1,2,4}
ColRP = {1,2,3}

I Major invariant of a matrix (echelon form)
I Gröbner basis computations (Macaulay matrix) [Faugère 99, 02]
I Krylov methods
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I Gröbner basis computations (Macaulay matrix) [Faugère 99, 02]
I Krylov methods

C. Pernet (Habilitation defense) High Perf. and Reliable Algebraic Computing November 25, 2014 17 / 39



Design of High Performance Exact Linear Algebra Kernels Rank profiles

Rank profiles

Definition (Row Rank Profile: RowRP)

Given A ∈ Km×n, r = rank(A).

informally: first r linearly independent rows

formally: lexico-minimal sub-sequence of (1, . . . ,m) of r indices of
linearly independant rows.

Example
1 1 0 0
1 0 0 0
0 1 0 0
0 0 1 0


Rank = 3
RowRP = {1,2,4}
ColRP = {1,2,3} → Generic ColRP.

I Major invariant of a matrix (echelon form)
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Design of High Performance Exact Linear Algebra Kernels Rank profiles

Computing rank profiles

Via Gaussian elimination revealing echelon forms:

[Ibarra, Moran and Hui 82]
S=A L P

[Keller-Gehrig 85]
=A RX

[Storjohann 00]
=A RX

[Jeannerod, P. and Storjohann 13]
A E= P L

Lessons learned (or what we thought was necessary):

I treat rows in order

I exhaust all columns before considering the next row

I slab block splitting required (recursive or iterative)
 similar to partial pivoting
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Design of High Performance Exact Linear Algebra Kernels Rank profiles

Pivoting strategies revealing rank profiles

Pivot Search

Pivot’s (i, j) position minimizes some pre-order:

Row

/Col

order: any non-zero on the first non-zero row

/col

Lex

/RevLex

order: first non-zero on the first non-zero row

/col

Product order: first non-zero in the (i, j) leading sub-matrix

1 1

1

1

1

Search Row perm. Col. perm. RowRP ColRP Tiles possible

Row order

Transposition Transposition 3 7
Col. order Transposition Transposition 3 7

Lexico. Transposition Transposition 3 7
Lexico. Transposition Rotation 3 3 3 7

Rev. lex. Transposition Transposition 3 7
Rev. lex. Rotation Transposition 3 3 3 7

Product Rotation Transposition 3 3
Product Transposition Rotation 3 3
Product Rotation Rotation 3 3 3 3
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Design of High Performance Exact Linear Algebra Kernels Rank profiles

Computing all rank profiles at once

Dumas, P. and Sultan 13

Definition (Rank Profile matrix)

The unique RA ∈ {0, 1}m×n such that any pair of (i, j)-leading
sub-matrix of RA and of A have the same rank.

Theorem

I RowRP and ColRP read directly on R(A)

I Same holds for any (i, j)-leading submatrix.

1 2 3 4
2 4 5 8
1 2 3 4
3 5 9 12

1 0 0 0
0 0 1 0
0 0 0 0
0 1 0 0

A R

A = PLUQ = P

[
L 0
M Im−r

] [
Ir

0

] [
U V

In−r

]
Q

With appropriate pivoting: ΠP,Q = R(A)
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Design of High Performance Exact Linear Algebra Kernels Rank profiles

A tiled recursive algorithm

Dumas, P. and Sultan 13

2× 2 block splitting

I O(mnrω−2) (degenerating to 2/3n3)
I computing col. and row rank profiles of all leading sub-matrices
I fewer modular reductions than slab algorithms
I rank deficiency introduces parallelism
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Design of High Performance Exact Linear Algebra Kernels Rank profiles

A tiled recursive algorithm

Dumas, P. and Sultan 13

Recursive call

I O(mnrω−2) (degenerating to 2/3n3)
I computing col. and row rank profiles of all leading sub-matrices
I fewer modular reductions than slab algorithms
I rank deficiency introduces parallelism
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Design of High Performance Exact Linear Algebra Kernels Characteristic polynomial

Computing the characteristic polynomial

Motivation

I Connection with the Frobenius normal form

I Krylov methods at large

I Graph invariants

I Crucial step in modular form computations

The last missing reduction

[Danilevsk̆ıi 37], [Hessenberg 42] CharPoly, deterministic O(n3)

[Keller-Gehrig 85] CharPoly, deterministic O(nω log n)

[Giesbrecht 93] Frobenius form, Las-Vegas probabilistic O(nω log n)

[Augot, Camion 94] Frobenius form, deterministic O(n3#inv factors)

[Storjohann 00] Frobenius form, deterministic O(n3) or O(nω log n log log n)
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Design of High Performance Exact Linear Algebra Kernels Characteristic polynomial

P. and Storjohann ISSAC’07

k-shifted form:

1

0

1

0

1

1

0

1

1

k k ≤ k

I From k to k + 1-shifted in O(n(nk )ω−1)

I Compute iteratively from a 1-shifted form

I Invariant factors appear by increasing degree

I Until the Hessenberg polycyclic form

nω
n∑
k=1

(
1

k

)ω−1
≤ ζ(ω − 1)nω = O(nω)

I Generalized to the Frobenius form as well

I Transformation matrix in O(nω log log n)

n 1000 2000 5000 10000

magma-v2.19-9 1.38s 24.28s 332.7s 2497s
fflas-ffpack 0.532s 2.936s 32.71s 219.2s

×7.5

×6.7
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Coding Theory for Fault Tolerant Computer Algebra

Outline

1 Design of High Performance Exact Linear Algebra Kernels
Matrix multiplication
Gaussian elimination
Rank profiles
Characteristic polynomial

2 Coding Theory for Fault Tolerant Computer Algebra
Approximation problems
Dense polynomial evaluation codes
Rational function codes
Sparse evaluation codes
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Coding Theory for Fault Tolerant Computer Algebra

Fault Tolerance

Reliability of large scale distributed computing

Peak Mean Time To Error Mean Time To Failure

Blue Waters 14 Pflops 15min ≈ 1/2 day
Tsubame 2 2.3 Pflops ? 15.8h

I Disk crash, hardware/software failures  hard errors

I Bitflip in main or cache memory  soft/silent errors

Trust in outsourced computations (P2P, Cloud, Volunteer, etc)

Byzantine error model:

I a corrupted node is not always wrong

I black-listing is not an option

Algorithm Based Fault Tolerance:
exploit the algebraic specificity of the algorithm to embed redundancy.
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Coding Theory for Fault Tolerant Computer Algebra

ABFT using error correcting codes

Unsecure

Computations ⇔

Noisy

Communication

 Choice of the parallelization algorithm determines

I the communication channel

I the error model

C. Pernet (Habilitation defense) High Perf. and Reliable Algebraic Computing November 25, 2014 26 / 39



Coding Theory for Fault Tolerant Computer Algebra

ABFT using error correcting codes

Unsecure Computations ⇔ Noisy Communication

 Choice of the parallelization algorithm determines

I the communication channel

I the error model
C. Pernet (Habilitation defense) High Perf. and Reliable Algebraic Computing November 25, 2014 26 / 39



Coding Theory for Fault Tolerant Computer Algebra

Evaluation-interpolation schemes

Polynomial evaluation

Ev(x0,...,xn−1) : K<n[X] −→ Kn

f 7−→ (f(x0), . . . , f(xn−1))
for x0, . . . , xn−1 distinct.
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Polynomial evaluation

Ev(x0,...,xn−1) : K<n[X] −→ Kn

f 7−→ (f(x0), . . . , f(xn−1))
for x0, . . . , xn−1 distinct.

A ∈ K[X]m×m

det(A)

A(x0) A(xn−1)

d0 dn−1
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Coding Theory for Fault Tolerant Computer Algebra

Evaluation-interpolation schemes

Chinese Remainder Theorem

Ev(p0,...,pn−1) : Z<p0×···×pn−1 −→ Zp0 × · · · × Zpn−1

m 7−→ (m mod p0, . . . ,m mod pn−1)
for p1, . . . , pn pairwise co-prime.

A ∈ Zm×m

det(A)

A (mod p0) A (mod pn−1)

d0 dn−1
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Coding Theory for Fault Tolerant Computer Algebra

Making evaluation-interpolation schemes fault tolerant

xi ∈ F f(xi)f ?

Problem

Recover an unknown function f , given as a black-box, from its evaluations.

Additional knowledge on the model

Dense polynomial: degree bound

Sparse polynomial: support unknown, bound on sparsity

Dense rational function: degree bounds

Trust in the evaluations

I errors (outliers)

I approximations: numerical noise
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Coding Theory for Fault Tolerant Computer Algebra

Making evaluation-interpolation schemes fault tolerant

xi ∈ F g =
∑dg

i=0 giX
if =

∑df
i=0 fiX

i,
f
g (xi)

f
g
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Coding Theory for Fault Tolerant Computer Algebra

Making evaluation-interpolation schemes fault tolerant

xi ∈ F f(xi)+eif ?

Problem

Recover an unknown function f , given as a black-box, from its evaluations.

Additional knowledge on the model

Dense polynomial: degree bound

Sparse polynomial: support unknown, bound on sparsity

Dense rational function: degree bounds

Trust in the evaluations

I errors (outliers)
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Coding Theory for Fault Tolerant Computer Algebra Approximation problems

Rational function reconstruction

Problem (RFR: Rational Function Reconstruction)

Given A,B ∈ K[X] with degB < degA = n,
Find f ∈ K≤df [X], g ∈ K≤n−df−1[X] such that

f = gB mod A.

Fact

The Extended Euclidean Algo. run on (A,B) and terminated when
deg fj ≤ df < deg fj−1, produces fj = ujA+ vjB s.t.

1 (fj , vj) is a solution to the RFR problem.

2 it is minimal: any other solution (f, g) is of the form

f = qfj , g = qvj for q ∈ K[X].
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Coding Theory for Fault Tolerant Computer Algebra Dense polynomial evaluation codes

Dense polynomial interpolation

xi ∈ F f(xi) f =
∑df

i=0 ciX
if ?

without error: polynomial interpolation (Lagrange, Newton, etc).

with errors: Reed-Solomon decoding
I Erroneous interpolant: h = Interp((yi, xi))
I Error locator polynomial: Λ =

∏
ei 6=0(X − xi)

= h mod
n−1∏
i=0

(X − xi)

Rational Reconstruction Problem:

(Λf,Λ) is a minimal solution  computed by Ext. Euclidean Algorithm

f = fj/vj .
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Coding Theory for Fault Tolerant Computer Algebra Dense polynomial evaluation codes

Dense polynomial interpolation with errors
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Coding Theory for Fault Tolerant Computer Algebra Dense polynomial evaluation codes

Correction capacity

Unique decoding of t errors whenever: n ≥ deg f + 2E + 1

Bounding the degree

I deg f rarely known a priori ; bound df ≥ deg f often pessimistic

I Early termination:

without errors: add evaluations until interpolant stabilizes
with errors: no stabilization

Parameter oblivious decoding

Khonji, P., Roch, Roche and Stalinsky 10

 how to use all available redundancy? f

Effective redundancy available

Upper bound on deg f redundancy used
with RS codes

 list decoder exploring all length n Reed-Solomon codes
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Khonji, P., Roch, Roche and Stalinsky 10

 how to use all available redundancy? f

Effective redundancy available

Upper bound on deg f redundancy used
with RS codes

 list decoder exploring all length n Reed-Solomon codes
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Coding Theory for Fault Tolerant Computer Algebra Rational function codes

Dense rational function interpolation with errors

xi ∈ F g =
∑dg

i=0 giX
if =

∑df
i=0 fiX

i,
f
g (xi)+ei

f
g
?

Λf︸︷︷︸
N

= Λ̄g︸︷︷︸
D

h mod
∏
yi 6=∞

(X − xi)

Rational Reconstruction Problem

(Λf, Λ̄g) is a minimal solution  computed by Ext. Euclidean Algorithm.

Correction capacity

Unique decoding of E errors whenever n ≥ df + dg + 2E + 1

I smoothly supports evaluations at poles (even erroneous ones)

I parameter oblivious decoding applies
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Coding Theory for Fault Tolerant Computer Algebra Sparse evaluation codes

Sparse interpolation

xi ∈ F f =
∑t

i=1 ciX
dif(xi)f ?

Without error: [Prony 1795] [Ben-Or and Tiwari 88]

I sample in a geometric progression: yi = f(αi)

I [Blahut’84]: the seq. (y0, y1, ...) has linear complexity t
I and is generated by Λ(X) =

∏t
i=1(X − αdi)

I Berlekamp-Massey algo. on 2t terms  di
I Vandermonde system  ci

With errors: rule of thumb:

I find a clean sub-sequence of 2t terms free of error
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Coding Theory for Fault Tolerant Computer Algebra Sparse evaluation codes

Sparse interpolation with errors

xi ∈ F f =
∑t

i=1 ciX
dif(xi)+eif ?

Without error: [Prony 1795] [Ben-Or and Tiwari 88]

I sample in a geometric progression: yi = f(αi)
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Coding Theory for Fault Tolerant Computer Algebra Sparse evaluation codes

Unique decoding by majority rule Berlekamp-Massey

Comer, Kaltofen and P. 12

Necessary condition for unique decoding: n ≥ 2t(2E + 1)

(ai) Λ(z) f(z)

x = (

(t−1)zeros︷︸︸︷
0 , 1, 0, 1, . . . , 0, 1) zt − 1 1

t

∑t−1
i=0 z

2im
2t

y = ( 0︸︷︷︸
(t−1)zeros

, 1, 0, −1, . . . , 0, −1) zt + 1 −1
t

∑t−1
i=0 z

(2i+1)m
2t

Sufficient condition for unique decoding: n ≤ 2t(2E + 1)

2t

Λ Λ Λ Λ Λ
1 2 3 4 5

E=2 n=2t(2E+1)
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Coding Theory for Fault Tolerant Computer Algebra Sparse evaluation codes

List decoding: using affine sub-sequences

Kaltofen and P. 14

f(α0) f(α1) f(α2) f(α3) f(α4) f(α5) f(α6) f(α7) f(α8)

= Ev(f, α)

f(α0) f(α2) f(α4) f(α6) f(α8)

= Ev(f, α2)

f(α1) f(α3) f(α5) f(α7)

= Ev(f ◦ (αx), α2)

f(α0) f(α3) f(α6)

= Ev(f, α3)

f(α1) f(α4) f(α7)

= Ev(f ◦ (αx), α3)

f(α2) f(α5) f(α8)

= Ev(f ◦ (α2x), α3)

Difficult worst case analysis

I [Erdös and Turan 36]: size of the largest
subset of {1 . . . n} not containing k terms in
arithmetic progression

I [Szeremedi 75]: arithmetic prog. are dense

n− n

(log log n)1/2
2k+9 ≤ E ≤ n

k−2
logk

n
k−2

.
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Coding Theory for Fault Tolerant Computer Algebra Sparse evaluation codes

Towards better decoding capacities

Unique decoding: n ≥ 2t(2E + 1)

List decoding (basic): n ≥ 2t(E + 1)

List decoding (affine subsequence): n ≥ 2t E
logE

Improved conditions for unique decoding

Descartes’ rule of signs: Over K = R>0: n ≥ 2t+ 2E + 1

Irreducibility of cyclotomic polynomials:

I Over K = C: n ≥ 2t log deg f
log 2t + 2E + 1

I Over F(p1)
q × · · · × F(pn)

q : n ≥ 2t log deg f
log 2t + 2E + 1

I No known decoding algorithm

I Makes the list decoding algo. a unique decoding one
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Coding Theory for Fault Tolerant Computer Algebra Sparse evaluation codes

Conclusion

Design framework for high performance exact linear algebra

Asymptotic reduction > algorithm tuning > building block implementation

I Favor tiled recursive algorithms
 architecture oblivious vs aware algorithms [Gustavson 07]

I New pivoting strategies revealing all rank profile informations
 tournament pivoting? [Demmel, Grigori and Xiang 11]
 O(rω + (m+ n+ |A|)1+o(n)) ? [Storjohann and Yang 14]

I Recursive tasks and coarse grain parallelization
 Light weight task workstealing management required (libkomp)
 Need for an improved recursive dataflow scheduling
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Coding Theory for Fault Tolerant Computer Algebra Sparse evaluation codes

Conclusion

Fault tolerance based on evaluation codes

I RS and CRT codes extended to rational fractions
 smooth generalization

I Parameter oblivious decoding for early termination schemes
 parameter oblivious list-decoding? [Wu 08]

I Sparse evaluation codes
 Gap between best correction radius and existing algorithm
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Coding Theory for Fault Tolerant Computer Algebra Sparse evaluation codes

Perspectives
Large scale distributed exact linear algebra

I reducing communications [Demmel, Grigori and Xiang 11]

I sparse and hybrid (Boyer and Vialla) [Faugère and Lachartre 10]

I combine genericity and efficiency to attack crypto. challenges

Polynomial matrix arithmetic for coding theory
I State of the art implementations in LinBox [Giorgi and Lebreton 14]

I Coding theory tools in Sage (Lucas)

I Further joint developments

Symbolic-numeric computation
I smooth transition between noise and errors for sparse codes [Comer Kaltofen P. 12],

[Kaltofen Yang 13-14]
 improve decoding capacities and efficiency
 extend to larger classes of codes

I High precision floating point linear algebra via exact rational arithmetic

Thank you
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