
Incremental Inference of Black-Box Components to support Integration Testing

Muzammil Shahbaz
France Telecom R&D

BP 98, 38243 Meylan Cedex, France
muhammad.muzammilshahbaz@francetelecom.com

Abstract

Model Based Testing relies on the availability of for-
mal models that are indispensable in analyzing the com-
plete system’s behavior and testing of the key functionali-
ties. On the other hand, the system designers of the industry
are mostly relying on the integration of readymade software
components (COTS) to build complex applications e.g. tele-
com services. Unfortunately, they are not provided with for-
mal models or with reasonable documentation. The spirit of
the thesis is to devise techniques to build formal models of
black-box components, and to adopt test-generation strate-
gies based upon the learned models to support integration
testing. As a first step, we are modifying previous learning
method, i.e., Angluin’s algorithm to work with (extended)
FSM models, which incorporates input/output parameters
and predicates as well. Our framework from telecom indus-
try focuses on methods that will be applied to large-scale
components. That’s why we are gradually moving towards
richer models such as EFSMs. 1

1 Motivation

Most telecom services are now developed by integrating
software components (COTS) from third party sources, and
linking them with some interfacing and orchestration glue
to provided the service. A typical service could integrate
several access components (e.g. a Web portal, a mobile ac-
cess, a voice access), a content server, charging and billing
components etc. The designer of the integrated system must
test the interactions between the components. In general,
only a small part of the general purpose components is ex-
ercised in their integration. In order to identify relevant tests
of the interactions, we would like to base our tests on for-
mal models of the components. But COTS are usually not
provided with complete and precise models that could help

1This PhD project has been started in Nov. 2005 with a collabora-
tion between France Telecom R&D and Institut National Polytechnique de
Grenoble, France.

in integration testing. In practice, maintaining the formal
models is unrealistic because COTS evolve over time that
quickly invalidates the original design sketch. The need of
formal models as a prerequisite in using COTS is a daunt-
ing prospect to the designers of large-scale systems. Mostly
they rely on their own intuitions to steer the testing effort
and to evaluate the test results.

A solution to the problem is to generate models directly
from the components. Automatic generation of formal
models remains an active research domain. Various static
and dynamic approaches have been proposed to generate
abstract models from given source code [9]. On the con-
trary, COTS come from third-party sources whose internal
structure is usually unknown, and are regarded as black-
box components. Therefore, model generation techniques
from code cannot be applied in this case. The only way to
learn these components is to interact with their external in-
terfaces, where their sequence of inputs and outputs, namely
behavior traces can be observed. These behavior traces will
be helpful in building a model. This way of learning mod-
els is difficult and leaves open questions, e.g., i) How the
complexity of components that can generate large behav-
ioral traces can be handled? ii) How can it be sure that the
learned model is a “reasonable” approximation of the un-
known model? These questions are challenging in order to
apply methods based upon machine observations.

Our goal is to devise techniques and algorithms to learn
black box components whose formal models are not given.
Once the components are learned, we need to develop inte-
gration testing techniques based upon their models. In this
vein, we rely on previous methods for automatically deriv-
ing models using an iterative learning approach. We do not
envision being able to deduce complete and correct models.
As a matter of fact, one can never explore a complete behav-
ioral spectrum of the system. We aim at providing partial
(or approximate) models which will help system designers
in better understanding of the system. We assume models
will be learned as (extended) state machines so that inte-
gration testing can be based upon the standard techniques
[7]. Our application domain is a telecom industry where

1

systems, e.g. call center solutions, web-based applications
and other related services, are usually composed of differ-
ent components. Figure 1 depicts an overview of the frame-
work, in which several black box components are integrated
and are communicating with each other. The tester interacts
with the system with the help of component’s external in-
terfaces and observes their internal communication.

C2C1

C3 C4
Te

st
er

Figure 1. An overview of the framework.
C1,C2,C3,C4 are black box software compo-
nents.

2 Related Work

To develop learning methods for black box components,
we start with the previous work on state machine inference.
The problem has been well studied by the theoretical com-
munity (see Pitt’s survey [10]). Gold [3] shows that finding
a minimal deterministic finite automaton (DFA) of a black
box machine is NP-Hard. Valiant [13] proposes PAC (Prob-
ably Approximately Correct) model for learning concepts
from examples. The goal of PAC learning algorithm is to
obtain DFA in polynomial time, with high probability, that
is a good approximation of target DFA. Even approximate
learnability of DFA was proven to be hard problem. The
initial approaches were based on passive learning that re-
lies mostly on given information. The research [11] shows
that passively learning approach is apparently intractable,
rather combination of active and passive learning is fea-
sible. In active learning approach, the learning algorithm
asks questions to eludicate conflicts in the model. In this
framework, Angluin [1] proposes an algorithm that can in-
fer a minimized Deterministic Finite Automaton (DFA) of
an unknown machine in a polynomial time. This has been
considered as a remarkable work and is applied in various
domains. For example, Rivest & Schapire [12] adapt this
algorithm in map learning scenarios. They improve the al-
gorithm by removing its reset assumption with the help of
homing sequences. Peled et al. [4] use this algorithm in
Adaptive Model Checking. Since the last decade, this al-
gorithm is being applied in somewhat more practical terms,
i.e., to learn machines from real world examples. For exam-
ple, Steffen et al. [6] studied domain specific optimizations

to Angluin’s Algorithm for prefix-closure, and have con-
sidered examples from telecom software systems. All this
work considers real world examples, but does not address
the issue of learning models other than DFA. In order to ap-
ply Angluin’s Algorithm, they transform their initial mod-
els into DFAs. Steffen et al. [6] use I/O automata for their
systems, but eventually transform them into DFAs. In our
case, we consider telecommunication systems as complex
reactive systems which receive signals from the environ-
ment, take decision on transitions, perform their inner com-
putations and produce signals to the environment. In other
words, a more adequate modeling of these systems yields
indeed a finite automaton that incorporates inputs and out-
puts along with the parameters, and which do contain func-
tions and predicates on such parameters. These models are
well-suited for systems that contain very large input set. Ex-
isting algorithms for DFA cannot be used in learning such
models, as the number of test queries can grow polynomi-
ally with the size of the input set. Also, these systems may
have infinite parameter value domain. If some values are
irrelevant or never used, the algorithm should ignore them.
Thus, we need to develop further techniques which help in
learning richer models. A very recent work [2] presents
a modified version of Angluin algorithm to infer a param-
eterized system. The system contains predicates but does
not take outputs and output parameters into account. Also
it assumes that the parameters are of boolean type. Thus,
we can conclude that the domain of learning richer models
from black box machines is still not addressed in depth, and
needs more contributions to cater its complexity.

3. Contributions

An overview of our expected contributions in the re-
search is given below:

• We intend to deal with richer models which are more
expressive than an ordinary automaton such as DFA.
As a first step, we are extending Finite State Machines
(FSM) with inputs and outputs along with the notions
of parameters and predicates. We call this model as Im-
plicit Predicate Parameterized Finite State Machines
(PPFSM). For the time being, we are not addressing
the issues of inferring functions, variables assignments
and complex guards on transitions. They are not re-
quired in our integration testing approach. We be-
lieve that PPFSM models provide a good starting point
which are not as simple as Label Transition Systems
(LTS) and not as complicated as Extended Finite State
Machines (EFSM). We can take benefit from previous
works [5, 6, 2, 4] and can proceed further for learning
richer models.

• We modify Angluin’s algorithm to infer richer models

directly from the back box components. We do not use
automata transformation techniques in order to apply
original algorithm.

• We are addressing the problem of Integration Test-
ing. Once the models are learned individually, they are
composed to build an integrated system. At this point,
we need an Integration Testing Strategy to derive test-
cases from the learned models so that the integrated
system of black box components could be tested in the
vicinity of the explored behaviors.

• Original Angluin’s algorithm assumes an oracle to ob-
tain counterexamples when the learned models are in-
correct. In our framework, we are using different tech-
niques for getting a practical source of counterexam-
ples. The idea is described in the section 4.

4. Sketch of the Approach

We intend to build an iterative approach for learning for-
mal models of the black box components. A sketch of the
approach is drawn in Figure 2. We start with testing black
box machines individually with the help of a learning algo-
rithm. The algorithm will generate systematic test cases that
can be applied to the machine to observe its behaviors. We
adapt this algorithm in such a way that it can learn richer
models (e.g. PPFSM) directly from the observations. Once
models are learned, we stop the first iteration and start com-
posing models to build an integrated system (meaning, in
that case, the integrated composition of models). The idea
is that the input and output interfaces of the components
are interconnected, so that an output interface of one com-
ponent can be directed towards the input interface of the
other component. This simplifies working of an integrated
system in which components communicate by taking inputs
from each other.

We say that the integrated system is well-defined if and
only if i) no output is produced from any component in
the communication that would be an unexpected input for
the receiving components and ii) no deadlock or livelock
is observed in the system. When any one of these con-
ditions is violated, we trace the problem from the learned
models and test the actual system of black box compo-
nents with the help of that trace. In this case, the output of
the actual system is considered as a counterexample, which
will be supplied to the learning algorithm to refine the sus-
pected models. This is the second iteration of the learn-
ing process and hence will continue until no counterexam-
ples are found. Once the integrated system is well-defined,
we test the actual system of black box components based
upon our learned models. A Test Generation Strategy [8]
can be adopted to generate test-cases from the learned mod-
els. Each time a test-case is executed, the actual outputs

are compared to those provided by the models. This could
reveal some contradictions, i.e., the output of the models
do not conform to the output produced by the black box
system. It terms as another source of counterexample, and
thence the counterexample will again be provided to the
learning algorithm to refine the suspected models. The iter-
ative process goes on until no counterexample is found, or
certain threshold limit is achieved on iterations, or certain
coverage criteria is achieved on the models.

learn

Algorithm
Learning

C1, ..., Cn

test

counterexamples

no

observations

yes

C1, ..., Cn

yes

no

counterexamples

Test Generation

system
well-defined?

Integrated System

Formal Models
M1...Mn

Black Box Components Black Box Components

Terminate

contradict?

compose
M1...Mn

test

Figure 2. A sketch of the approach.

5. Example

We further illustrate our approach with the help of a
small example. Consider a PPFSM model in the figure 3
as a black box component. The model is an extension of
FSM with inputs and outputs, along with the parameters.
The model has implicit predicates, e.g., the outward transi-
tions of state 1 are labelled with the same input symbol a,
but with different input parameter values 1 and 2 that take
the transitions to different target states. We assume that the
set of input types I and the set of parameter types D are
known to learn the black box components. We base our

1 2

a(1) / b(hello)

a(2) / b(hi)

a(1) / b(hi)

D = set of Natural numbers
I = {a}

Figure 3. An Example of a PPFSM model.

algorithm on Angluin’s to learn the PPFSM models of the
components. The algorithm will generate systematic test-
cases to observe the behaviors of the component. These
observations are organized into two tables namely, Primary
Table (PT) and Auxiliary Table (AT). The structure of the
tables can be seen in the figure 4. The rows and columns
are labelled by the elements of I 2. The rows of PT records
the output symbols produced by the component, whereas
the rows of AT records the value pairs of input parameter
values and their corresponding output parameter values. To
simplify the example, we record only the last output sym-
bol in PT and the last value pair in AT from the complete
output sequence produced by the component. Two rows in
PT are different if they contain different output symbols.
Two rows in AT are different if for the same input param-
eter value they contain different output parameter values.
Hence in the figure 4, the rows ε and a are different due
to (1, hello) and (1, hi) recorded in AT . The row aa is
similar to the row a because of the same outputs in both ta-
bles. When the execution of the possible test-cases is over,
a PPFSM model of the component is conjectured. The dif-
ferent rows of the tables are regarded as different states of
the PPFSM, and transitions are made with the help of the
observations recorded in the tables. The conjecture made
from the tables in the figure 4 is akin to the PPFSM model
in the figure 3.

ε

a a

ε

b

aa b

a

(1,hello), (2,hi)

(1,hi), (2,hi)a

aa (1,hi)

b

Figure 4. PT (left) and AT (right) of the exam-
ple in figure 3.

All black box components are learned in the same man-
ner and finally their models are composed to build a well-
defined integrated system. The next step is to devise an In-
tegration Testing Strategy such that the designer can test the
interesting behaviors of the complete black box system.

6. Conclusion

Our goal is to infer formal models of the black box com-
ponents in isolation and then to test the integrated system of
these components. At the same time, we are addressing the
issue of learning rich models that can capture the peculiari-
ties of the complex systems. We start with a parameterized
model that is called PPFSM, and extend the Angluin’s al-
gorithm so that it can learn such models directly from the

2except the first row, which is labelled by ε, i.e., an empty string

observations. We also try to find better solutions for ob-
taining counterexamples which are essential in refinement
of the learned models. Later, we compose the learned mod-
els to build a well-defined integrated system, and then to
perform integration testing with respect to these models.

We intend to explore these directions, and continue im-
proving overall approach that leads towards the models, e.g.
EFSMs, that are well-suited for the designing of complex
systems.

References

[1] D. Angluin. Learning regular sets from queries and coun-
terexamples. Information and Computation, 2:87–106,
1987.

[2] T. Berg, B. Jonsson, and H. Raffelt. Regular inference for
state machines with parameters. Lecture Notes in Computer
Science, 3922:107–121, Mar. 2006.

[3] E. Gold. Complexity of automaton identification from given
data. Information and Control, 37:302–320, 1978.

[4] A. Groce, D. Peled, and M. Yannakakis. Adaptive model
checking. In Tools and Algorithms for Construction and
Analysis of Systems, pages 357–370, 2002.

[5] A. Hagerer, H. Hungar, O. Niese, and B. Steffen. Model
generation by moderated regular extrapolation. In Funda-
mental Approaches to Software Engineering, pages 80–95,
2002.

[6] H. Hungar, O. Niese, and B. Steffen. Domain-specific op-
timization in automata learning. In CAV, pages 315–327,
2003.

[7] D. Lee and M. Yannakakis. Principles and methods of test-
ing finite state machines - A survey. In Proceedings of the
IEEE, volume 84, pages 1090–1126, 1996.

[8] K. Li, R. Groz, and M. Shahbaz. Integration testing of com-
ponents guided by incremental state machine learning. In
TAIC PART, Windsor, UK, 2006.

[9] J. W. Nimmer and M. D. Ernst. Automatic generation of
program specifications. In ISSTA ’02: Proceedings of the
2002 ACM SIGSOFT international symposium on Software
testing and analysis, pages 229–239, New York, NY, USA,
2002. ACM Press.

[10] L. Pitt. Inductive inference, dfas, and computational com-
plexity. In AII ’89: Proceedings of the International Work-
shop on Analogical and Inductive Inference, pages 18–44,
London, UK, 1989. Springer-Verlag.

[11] L. Pitt and M. K. Warmuth. The minimum consistent dfa
problem cannot be approximated within and polynomial. In
STOC ’89: Proceedings of the twenty-first annual ACM sym-
posium on Theory of computing, pages 421–432, New York,
NY, USA, 1989. ACM Press.

[12] R. L. Rivest and R. E. Schapire. Inference of finite automata
using homing sequences. In Machine Learning: From The-
ory to Applications, pages 51–73, 1993.

[13] L. G. Valiant. A theory of the learnable. In STOC ’84: Pro-
ceedings of the sixteenth annual ACM symposium on Theory
of computing, pages 436–445, New York, NY, USA, 1984.
ACM Press.

