

RIL: Requirements in the Loop

An End-to-End Requirement-based System Engineering and Validation Process

System Engineering: State of the Art

System analysis: MBSE (SysML) tools

- Use cases, functions, architecture... but: \rightarrow
 - Complex, no simulation •
 - Ignore the requirements •

Language *formalization*: in-house methods/tools, "boiler plates"

Avoid natural language ambiguities

Common **Practice**

Advanced

Practice

R&D **Practice**

Requirements definition: Natural language

Reference for safety-critical standards ➔

Requirements *management*. Doors, Reqtify...

> Versioning & traceability features Formal verification: proof tools, MBSA ->

Expertise required & scalability issues

Language *verification*: ontological tools

Very heavy to deploy >

- All transformations are manual
- **70% of the errors introduced in SW projects are introduced during the specification phase, only 4% are detected in that phase**

RIL: Requirements In the Loop

System Architecture and Interfaces

When lightIntensity > 60 % and headLight was 'OFF , headLight shall be 'OFF

DEBUG

BUILD

switch is stable during 3 [second]

Use Cases

lightIntensity goes up and down respectively to 75 % and 55 %

Requirements

Requirements:

- All functional Requirements can be written using a set of templates
- Example:
 - Natural language requirement: "When the light intensity is less than 60% for more than one second, headlight shall be set to ON"
 - Equivalent template-based requirement:

Each template has an executable semantics:

When lightIntensity is less then 60% for more than 1 second, then headlight shall be 'ON

Possible Execution of the System

Benefits: Debug the Requirements as soon as your write them

Basic Concepts

Basic Concepts

Use Case: a set of constraints on the inputs and between the inputs

 $((lightIntensity) \in [0, 1])$ InitiallylightIntensity is (71%)lightIntensity goes up and down between 70% and 55% $(derivative of lightIntensity) \in [-0.1 [1/second], 0.1 [1/second]]$

One Use Case can be turned into as many Test Vectors as desired

(Automatic Test Vectors Generation)

One possible Test Vector

20 possible Test Vectors

Theoretical and Technical Backgrounds

- Company created in 2013. STIMULUS released in early 2015.
- □ STIMULUS users in avionics, automotive, transportation, energy.
- International presence: USA, UK, Germany, Spain, Israel, Japan, China, Korea, India

STIMULUS Users

Requirements In the Loop

Debug Your Requirements

Debug Your Requirements

Additional Slides

STIMULUS Test Campaign

Today's Industry Practice (2/4)

Today's Industry Practice (3/4)

4 test cases for In1

Today's Industry Practice (4/4)

4 test cases for In2

What you really want to do

- Define constraints

 on the inputs and
 between the inputs
- 2. Generate numerous test vectors within the constraints

Define the test acceptance criteria **independently** of each individual test vector: use **requirement**-based oracles

Refine & Validate Requirements over a System Architecture

Level 1 Requirements

Level 2 Architecture

Level 2 Component Requirements

(AP_REQ_002)]From each LG_cmd is unstable ,

Do State shall be 'closed once within 2 [second] afterwards

During 20[second] - period , State shall be 'closed

[AP_REQ_003] When LG_cmd is stable and last State is 'closed has been true during more than 20 [second], State shall be 'open [AP_REQ_004] When State is 'closed,

When close_general_EV has been true during more than 1 [second], pressurized shall be true

Level 2 Component Requirements

[DPI_REQ_007]When ((retractation_sequence is true) and (outgoing_sequence is false)),	
Before ((doors_closed is true) and (gears_retracted is true)),	
close_general_EV shall be true	
afterwards	
open_doors shall be false	
close_doors shall be false	
close_general_EV shall be false	
[DPI_REQ_008]When ((retractation_sequence is true) and (outgoing_sequence is false)),	
When (pressurized is true), As long as (gears_retracted is false), open_doors sha	<i>ll be</i> true
[DPI_REQ_009]When ((retractation_sequence is true) and (outgoing_sequence is false)),	
When ((pressurized is true) and , As long as (gears_retracted is false), retract_gea	rs shall be true
(doors_open <i>is</i> true)	

Level 3 Component Requirements

Level 3 Component Requirements

STIMULUS – Simulink (or SCADE)

Step 1:

- Test automatically an FMU containing the Simulink model in STIMULUS
- STIMULUS identifies the violations of the specification
- Export the test cases leading to the errors

STIMULUS – Simulink (or SCADE)

Step 2:

 Use the generated test cases (csv) to debug the Simulink model in Simulink

