
RIL: Requirements in the Loop

An End-to-End Requirement-based
System Engineering and Validation Process

System analysis: MBSE (SysML) tools

 Use cases, functions, architecture… but:

• Complex, no simulation

• Ignore the requirements

Language formalization: in-house

methods/tools, “boiler plates”

 Avoid natural language ambiguities

Formal verification: proof tools, MBSA

 Expertise required & scalability issues

Language verification: ontological tools

 Very heavy to deploy

Requirements definition: Natural language

 Reference for safety-critical standards

Requirements management: Doors, Reqtify…

 Versioning & traceability features

Common

Practice

Advanced

Practice

R&D

Practice

System Engineering: State of the Art

• All transformations are manual
• 70% of the errors introduced in SW projects are introduced during the

specification phase, only 4% are detected in that phase

System

Today’s Industry Practice

Use Cases Requirements

??? !!!
!!!

Validation Plans

Test Cases

RIL: Requirements In the Loop

HILRIL

MIL SIL

Value Proposition

RequirementsUse Cases

System Architecture and Interfaces

Value Proposition

RequirementsUse Cases

Possible Execution of the System

Value Proposition

Design
Model

RequirementsUse Cases

Source
Code

System

Possible Execution of the System

When lightIntensity is less then 60 % for more than 1 second ,
then headlight shall be ‘ON

Requirements:
▪ All functional Requirements can be written using a set of templates

▪ Example:

▪ Natural language requirement: “When the light intensity is less than 60% for more than one
second, headlight shall be set to ON”

▪ Equivalent template-based requirement:

Or, in Korean:

condition

action

Basic Concepts

Basic Concepts

Each template has an executable semantics:

Benefits: Debug the Requirements as soon as your write them

Possible Execution of the System

When lightIntensity is less then 60 % for more than 1 second ,
then headlight shall be ‘ON

Headlight =ON

lightIntensity

60%

Headlight =ON

Use Case: a set of constraints on the inputs and
between the inputs

One possible Test Vector

20 possible Test Vectors

One Use Case can be turned into
as many Test Vectors as desired

(Automatic Test Vectors Generation)

Basic Concepts

Value Proposition

System Under Test

Observers

(requirements)

Test Vectors

(stimuli)

RequirementsUse Cases

Value Proposition

Test Log Files
(I/Os)

RequirementsUse Cases

Observers

(requirements)

Theoretical and Technical Backgrounds

Compiler

Data constraints:
- Logico-numerical solver
processing the relationships
among data

- Control graph
- Backtrack mechanism

+ +

Simulator

Constraints over variables

BDD (Binary Decision Diagrams) + convex
polyhedra

Argosim Company Profile

 Company created in 2013. STIMULUS released in early 2015.

 STIMULUS users in avionics, automotive, transportation, energy.

 International presence: USA, UK, Germany, Spain, Israel, Japan, China, Korea, India

STIMULUS Users

Requirements In the Loop

RequirementsUse Cases

State-MachinesArchitecture

Model Automated Validation
Environment

Test Vectors

(stimuli)

Observers

(requirements)

Demo

Additional Slides

STIMULUS Test Campaign

Today’s Industry Practice (2/4)

System Under
Test

In1

In2

In3

In4
Out1

In19

In20

•
•
•
•
•

Out2

Out3

Out4

Out5

Today’s Industry Practice (3/4)

System Under
Test

In1 = 1 , 5 , 10 , -3

•
•
•
•
•

Out3 = true , false , true , falseFixed
values

4 test cases for In1

Today’s Industry Practice (4/4)

System Under
Test

In2 = 4 , 6 , 20 , 0

•
•
•
•
•

Out3 = false , false , false , trueFixed
values

4 test cases for In2

In1 : Fixed value

Out1 = 1 , 0 , 4 , -1

What you really want to do

System
Under Test

•
•
•

1. Define constraints
on the inputs and
between the inputs

2. Generate numerous
test vectors within
the constraints

Define the test
acceptance criteria

independently of each
individual test vector:

use requirement-based
oracles

Refine & Validate Requirements
over a System Architecture

Level 1 …………….……………………………...

Level 2 ………………

Level 3 … Analog
Switch

Electro-

Valve

Pressure
Sensor

… …… … ……

Landing Gear

Analog Part Gears
Digital Part

and GUI
Doors

Level 1
Requirements

Level 1 …………….……………………………...

Level 2 ……

Level 3 ……
Analog
Switch

Electro-

Valve
Pressure
Sensor

Landing
Gear

Analog
Part

GearsDigital Part
and GUI

Doors

Level 2
Architecture

Level 1 …………….……………………………...

Level 2 ……

Level 3 ……
Analog
Switch

Electro-

Valve
Pressure
Sensor

Landing
Gear

Analog
Part

GearsDigital Part
and GUI

Doors

Level 1 …………….……………………………...

Level 2 ……

Level 3 ……
Analog
Switch

Electro-

Valve
Pressure
Sensor

Landing
Gear

Analog
Part

GearsDigital Part
and GUI

Doors

Level 2 Component
Requirements

Level 1 …………….……………………………...

Level 2 ……

Level 3 ……
Analog
Switch

Electro-

Valve
Pressure
Sensor

Landing
Gear

Analog
Part

GearsDigital Part
and GUI

Doors

Level 2 Component
Requirements

Level 3
ArchitectureLevel 1 …………….……………………………...

Level 2 ……

Level 3 ……
Analog
Switch

Electro-

Valve
Pressure
Sensor

Landing
Gear

Analog
Part

GearsDigital Part
and GUI

Doors

Level 1 …………….……………………………...

Level 2 ……

Level 3 ……
Analog
Switch

Electro-

Valve
Pressure
Sensor

Landing
Gear

Analog
Part

GearsDigital Part
and GUI

Doors

Level 3 Component
Requirements

Level 1 …………….……………………………...

Level 2 ……

Level 3 ……
Analog
Switch

Electro-

Valve
Pressure
Sensor

Landing
Gear

Analog
Part

GearsDigital Part
and GUI

Doors

Level 3 Component
Requirements

Analog
Switch

Electro-

Valve

Pressure
Sensor

Landing Gear

Analog Part Gears
Digital Part

and GUI
Doors

Use
Cases

Use
Cases

Use
Cases

Analog
Switch

Electro-

Valve

Pressure
Sensor

Landing Gear

Analog Part Gears
Digital Part

and GUI
Doors

Use
Cases

Use
Cases

Use
Cases

STIMULUS – Simulink (or SCADE)

Step 1:
• Test automatically an FMU containing the Simulink model in STIMULUS
• STIMULUS identifies the violations of the specification
• Export the test cases leading to the errors

Test Vectors

(stimuli)

Simulink Model

Observers

(requirements)

STIMULUS – Simulink (or SCADE)

Step 2:
• Use the generated test cases (csv) to debug the Simulink model

in Simulink

Test Vectors

(.csv)

Simulink Model

