Lecture Notes in Computer Science

Dynamic Application Frameworks
using OSGi and Beanome

Humberto Cervantes, Didier Donsez, Richard Hall

Université Joseph Fourier, IMAG, LSR
Bat. C, 220 rue de la Chimie, Domaine Universitaire
BP 53, 38041 Grenoble Cedex 9, France
Tel : +33 476 63 55 49 Fax : +33 4 76 63 55 50
Hunbert o. Cervantes@ nag. fr
Di di er. Donsez@ nmag. fr
Ri chard. Hal | @ mag. fr

Abstract. This article discusses how to support the development of applications
that exhibit dynamic behavior with respect to extensible functionality, deploy-
ment, and administration. The paper begins with a introduction to OSGi and
Beanome. It continues with the architecture proposals for an iTV platform, a
peer-to-peer collaborative framework and a mobile agent platform.

Keywords. OSGi, Deployment, Interactive TV, Peer-to-Peer, Mobile Agent.

1 Introduction

Application frameworks save software developers time by raising the abstraction level
of development for particular problem domains. In the past, for example, many appli-
cation frameworks focused on graphical user interface (GUI) frameworks, which sim-
plified creating GUI applications by providing standard application structure and
event handling capabilities. In the last few years, dynamic application frameworks
used a similar approach to support runtime extension of application functionality using

techniques such as runtime code loading.

The following three specific domains have either created or could leverage dy-

namic application frameworks:

1

Interactive TV (iTV) - technology that lowers the barrier to online service
access via a set-top box (STB) and television equipment; this includes
content as well as service access.
Peer-to-peer systems - technology that allows powerful client computers to
form ad-hoc "networks of peers," where each computer is capable of act-
ing as a client or a server in the network; generally, peer-to-peer systems
perform a specific task, such as file sharing or work-group collaboration.

Lecture Notes in Computer Science 2

* Mobile agent platforms - technology that enables small programs to move
autonomously around a network for purposes of reduced network band-
width consumption; mobile agents are generally simple programs designed
to perform a single, small task, such as searching the Web for the lowest
price for a piece of computer hardware.

In general, these three domains are either built from scratch or upon hand-coded
dynamic application frameworks; for example, DVB-MHP [1] for iTV, JXTA [8] for
peer-to-peer, and Aglets [11] for mobile agents. Closer examination of these three
technological areas reveals similarities in some of their core requirements. Specifi-
cally, all three share these characteristics:

e frequent and regular deployment of new or updated software components,

e coarse- and/or fine-grained extensibility of functionality (via dynamically
loadable code),

e potentially non-stop execution,

e the need to limit resource consumption, and

e loosely administered control.

Partial approaches to deal with all of these issues exist in some form, but no frame-
work has focused on providing a solution for the issues that are common for systems
that exhibit the characteristics listed above. This paper presents the use of Open
Services Gateway Initiative (OSGi) and an extension to it, called Beanome, as a plat-
form for building dynamic frameworks. The combination of OSGi and Beanome
provides mechanisms for dealing with the on-going deployment of software compo-
nents, dynamic code loading, and efficient resource handling.

To illustrate how OSGi and Beanome are useful as the core of a dynamic frame-
work, the three application domains listed above are described in more detail and a
proposed architectural framework solution for each is presented that leverages OSGi
and Beanome functionality. The next section describes OSGi and Beanome in more
detail. The subsequent three sections describe the proposed architectural framework
solutions for iTV, peer-to-peer systems, and mobile agent platforms, respectively,
followed by the conclusion.

OSGi and Beanome

The Open Services Gateway Initiative (OSGi) [2], established in 1999, is an inde-
pendent, non-profit corporation working to define and promote open specifications for
the delivery of managed broadband services over different types of networks (e.g.,
HomePnP, HomeRF, CEBus, WiFi, X11, HAV], etc.). OSGi mainly targets embedded
devices with potential memory constraints (set-top boxes, residential gateways, alarm
systems, ATMs, healthcare monitors, routers, cable modems, etc.). OSGi has defined
the specification for an open services framework, also referred to as a services gate-
way, for which there currently exist several implementations, such as Sun's JES [17]
and OSCAR [3]. OSGi expects services gateway to be widespread in the near future
since more and more homes, vehicles, and offices are being equipped with devices
and networks that are ideal targets for this technology.

Lecture Notes in Computer Science 3

As stated in the specification, "the primary goal of the OSGi service Framework is
to use the Java programming language's platform independence and dynamic code-
loading capability to make development and dynamic deployment of applications for
small-memory devices easier." OSGi also defines the specification of a device access
system, which supports automatic detection of attached hardware devices (web cams,
smart card readers, etc.). The device access system can automatically download and
start or update appropriate device drivers. This allows devices to be plugged and un-
plugged at any time; the device access system immediately propagates these changes
to the registered services.

There are three important concepts in OSGi: services, bundles, and contexts. In
OSGi, an application is designed as a set of cooperating services, with each service
implementing a part of the application functionality. For instance, a word processor
application may rely on a spell-checking service. Services are Java interfaces with
associated implementation classes that perform specific functionality. Services are
packaged in bundles; a bundle is a Java JAR file and the functional and deployable
unit for services along with their associated resources, such as icons files and native
libraries. Bundles are downloaded and installed in the OSGi framework. In each bun-
dle, a special activator class manages the simple life cycle of the services shipped in
the bundle.

Framework management includes installing, updating, starting, stopping and unin-
stalling the bundles. Management can be done in a local or remote manner and even-
tually a centralized server may remotely administer the services gateway as shown in
figure 1, although this is not explicitly defined in the OSGi specification.

During execution, bundles might change their state and, as a consequence, services
might be registered or unregistered. Because of this, clients must listen to events pro-
duced by the framework that announce the registering or unregistering of services.
When a new service is registered, and if a client is interested in it, the client is notified
so that it can ask the framework for a reference to the service. In the case when a ser-
vice is unregistered and a client is using the service, it will again be notified, but this
time it should discard any held reference to the service. Services are registered in the
framework using their class name and a set of properties. A simple LDAP-based query
mechanism enables bundles to request and use registered services. The bundle context
is the execution environment of a bundle in the framework and enables access to the
registry; the context is given to a bunde via its activator class at start-up.

The OSGi framework is dynamic in nature for the type of applications it targets,
namely home networks in which devices that are connected to the network register
services in the framework. These devices might be disconnected at any time and as a
consequence bundles may ask the framework to unregister their services, so other
bundles should be prepared to handle this situation.

There are two potential downsides to the standard OSGi model. The first one arises
from the fact that all the complexity of service registering and connection must be
done in the activator, which can be a complex task, and the second one arises from the
fact that in OSGi there is no way to express static or dynamic dependencies between
services, so it is not possible to describe the structure of a particular framework or
application.

Lecture Notes in Computer Science 4

Developpement Packaging

class |o11
110
Java [110
.class

Energy Ctrl

3]

Console

)

ervice
rovmcer

N\
N

TV set

End User

2

Deployment

Healthcare monitor

Fig. 1. Life cycle of bundles and services

Beanome [4] adds a layer on top of the standard OSGi model where some of the
main concepts found in component models such as CCM [11] and COM [11] are in-
troduced. Components can be described in an abstract way, with provided and re-
quired interfaces along with properties. Dynamically extensible frameworks and ap-
plications can be built by assembling Beanome components. The Beanome core is
delivered itself as an OSGi bundle, and as such it can become the client to services
that allow different capabilities to be added to it (for example, the core can make use
of a service to render component instances persistent). Beanome and the OSGi frame-
work do not deal with distributed applications.

OSGi has interesting features with respect to deployment and distribution (delivery)
of the bundles along with simple (eventually remote) administration of the framework.
Beanome completes OSGi by providing a component model to ease dynamic applica-
tion/framework building. The next three sections describe the use of the
0OSGi/Beanome tandem to provide a dynamic execution framework for applications
widely distributed with loose administration.

Interactive TV Terminals

Context

Interactive TV (iTV) is a new and promising application development field [5][6].
Since TV sets are omnipresent and they are simple to use without much skill, iTV is
likely to be one of the major entry points to online services for the masses. iTV termi-
nals, called set-top boxes (STB), can browse and play xHTML documents, Flash
presentations and Java XLets. Java XLets is the equivalent to the Java applets for the

Lecture Notes in Computer Science 5

desktop HTTP browsers. The network infrastructure for iTV uses mainly one-way
broadcast technologies such as cable, satellite, and terrestrial transmissions. The STB
is sometimes connected to the network infrastructure via a telephone line to provide a
upload link. The upload link enables access to remote servers, such as those of TV
interactive games.

The TV viewer can subscribe the Pay TV channels (the stream is scrambled to re-
strict the access) or receive free and unscrambled channels. In both cases, the content
provider may reach millions of STBs. The Pay-TV provider can not administer with
accuracy its subscribers STBs, because the one-way broadcast network can not ac-
knowledge installations, updates, and removals of new applications or part of the exe-
cution environment. In the case of free channels, the TV viewers buy their own STB
and administer it themselves.

In this context, an application (i.e., Java XLet) must be deployed with minimum in-
tervention of the content provider. All its components are downloaded by the broad-
cast link, installed, and started on-demand. Since the STB memory resources are lim-
ited, unused components must be removed when they are not used by any active ap-
plication.

@}A XLet EPG '.Auctlon'. Maileri
: Manager S Xlet : : et : XLet' i Card I Card :

Satellite Network Termlnal = Service :
BroadCast H 3
(MPEG2-TS) F|IeSystem D D D i :
-(Cllent Slde): :
: *:Beanomet e

Core i MHP-JavaTV

pJava / J2ME-CDC-PBP

Fig. 2. Interactive TV Terminal Platform

Architecture proposal

The main interest of the tandem OSGi/Beanome is to support autonomous deploy-
ment and startup of iTV applications. Moreover, since the application may run for a
long time, OSGi/Beanome enables component update and also allows several versions
of the same component to coexist in the STB execution environment. Components
may be part of dedicated applications or part of the iTV platform (DVB-MHP [1],
JavaTV [14], OCF, Personal Profile library [12]) and are packaged as separate bun-
dles (cf figure 2).

The deployment of a XLet can be initiated either by the content provider or by the
TV viewer. The content provider pushes a list of applications for deployment through

Lecture Notes in Computer Science 6

the broadcast link. An example of these pushed applications is the Electronic Program
Guide (EPG), which lists all the channels and iTV services. When the TV viewer se-
lects an iTV service in the EPG panel, the corresponding XLet is deployed. In both
cases, the XLet manager retrieves the XLet description in the broadcast link and
downloads the bundles of all required components. As soon as all of these bundles are
active, the application starts. Figure 2 illustrates three active XLet on the STB. The
EPG requires a CardService to gather information preferences and authorization from
the subscriber smartcard. When the viewer exists from a completed service, the corre-
sponding XLet is undeployed and all the components are uninstalled if they are not
shared by other XLets.

Peer-to-Peer Collaborative Applications

Context

Peer-to-peer computing promotes the maximum usage of all the low-cost individual
computing and storage resources available on the Web. Unlike traditional distributed
systems, peer-to-peer networks aggregate the millions of computers connected to the
Web for purposes of file sharing (Napster, Gnutella [7]) or to leverage wasted ma-
chine cycles for supercomputation (SETI, Genome decoding). In a peer-to-peer net-
work, each peer is both a client requesting resources and a server providing resources.
Peer-to-peer computing provides various degrees of performance, reliability, scalabil-
ity, and, in some cases, anonymity. However, in peer-to-peer networks, peers join and
leave the network frequently, may not have permanent network addresses, or may be
behind a firewall. Therefore, platforms such as Gnutella and JXTA [8] provide com-
munication stacks to overcome these limitations.

This section focuses on one particular application of peer-to-peer: instantaneous
collaborative platforms. A general collaborative platform (or groupware) is a software
system that supports multiple users working together on a related task, such as editing
a shared document, participating in a workflow process, piloting a simulated subma-
rine robot, or playing a role in a multi-player game. The collaborative tool provides
mechanisms to help users coordinate and keep track of the on-going collaborative
task. The participant (i.e., the user) uses a set of predefined tools (e.g. a drum, a key-
board and a rhythmic box in a collaborative music workbench) to realize his part of
the project.

Instantaneous collaborative platforms are collaborative platforms in which not all
tools are predefined. The instantaneous platform provides a plug-in mechanism to
load new tools on-demand when one of the participants starts to use it. The plug-in is
automatically loaded and started on all the participants platforms. The plug-in code
can be loaded from its manufacturer's centralized server or directly from the computer
of the participant who starts first the tool in the peer-to-peer manner. Then, the repli-
cated plug-ins of the tool cooperate by exchanging peer-to-peer messages (e.g., syn-

Lecture Notes in Computer Science 7

chronization events and internal state changes). At the end of the collaboration, the
loaded tools may be automatically removed.

Plugin loading 7

! Plugin : : i : it i P! pugin
5Ma:§;2r5 ! Dub } iSampler isampleri Dub_ iiRnythmi 5Ma:§;2r5
b MO P t Plugn £ Plgin 3£ Plug £ £/
[: [] : Events
:Beanome; : ﬂ ﬂ ﬂ ﬂ ﬂ Beanome_
i Core : : i : : : P :
: P2P P2P MusmWorkbench : P2P Music Workbench :
protocols : 3

OSGi OSGi

J2SE J2SE
Peer A Peer B

Fig. 3. P2P Collaborative Music Workbench based on OSGi

Architecture proposal

The instantaneous platform framework must load, install, and start plug-ins at runtime.
Moreover, the peer-to-peer client should not require restarting when new plug-ins are
added or existing plug-ins are freed. A platform built on OSGi/Beanome, benefits
from safe on-demand class loading and secure code execution since plug-ins may be
downloaded from untrusted peers.

The architecture of the platform is composed of the collaborative environment that
represents the shared workspaces, the plug-in manager that downloads and starts the
plug-ins, and the plug-ins that implement a specific tool and display the set of com-
mands on the user panel. Plug-ins are designed as an set of services invoked by the
collaborative environment. They may depend from the service of others plug-ins.
When a participant actives a plug-in installed on his peer, the plug-in manager of a
peer notifies all the plug-in managers of the other peers participating to the collabora-
tion session. Then when a plug-in manager receives the notification of new started
plug-in, it delegates to Beanome the location and the loading of the required plug-in.

Figure 3 illustrates two peers A and B that execute a collaboration music work-
bench to compose music. The music workbench is replicated in each peer. But peers
may have initially different tools. When the user B starts his rhythmic box plug-in, the
plug-in manager B notifies the plug-in manager A of the activation of a new plug-in.
Then the plug-in manager A loads and starts the rhythmic box.

The collaborative environment, the plug-in manager and plug-in are packaged in
OSGi bundles. Moreover, the communication protocols are also installed as bundles

Lecture Notes in Computer Science 8

since the protocols such as peer-to-peer ones are released regularly. This allows a
automatic updates of protocols stacks.

Mobile Agents Platforms

Context

A mobile agent paradigm is a computing model used to optimize network resources
and to enable fault tolerance in mobile and ubiquitous[9][10]. In the client-server
paradigm, the client program sends requests to a server and then processes gathered
data to present the results to the user. This incurs a lot network traffic and requires the
client to always be connected to the network. A mobile agent is a software program
that migrates to the resource's site to process data where the resource resides. Mobile
agents are generally designed as autonomous programs that roam from site to site to
gather or distribute information, negotiate trade, and finally return back to the initial
site to present the result.

A mobile agent platform initiates the creation of new agents for the end-user (ter-
minal site) and accepts immigrant agents for execution (acceptor site). The platform
guarantees security by checking the code and/or the signature of the the immigrant
agent. The site can make confidential the gathered information by encryption and
signing before an emigrant agent roams to another site.

Applications domains of mobile agents are vast and include distributed search for
information (named Knowbots or KNOWIlegde roBOTs), WorkFlow (active docu-
ments), services for telecommunications (in TINA), intelligent networks, intelligent
messages, management of domain names DNX, network administration (SMNP),
management of the mobility of nomadic users, and e-commerce. A number of mobile
agent systems have been designed and implemented in academic institutions and
commercial firms. The most well-known systems are the Aglets from IBM-Tokyo,
Concordia, and Voyager. Most of agent systems are written in Java, which offers
properties such as the code mobility, portability, security, and widespread developer
acceptance.

Architecture Proposal

Since the agent code is installed and removed many times at every visited site, the
agent execution framework should never stop and must free memory resources each
time an agent leave the site. Therefore, OSGi/Beanome is a good candidate to provide
a Java-based mobile agent platform. OSGi is natively designed to load and unload
external code.

The architecture uses one class loader per agent to load and remove the agent code.
Security managers create a sandbox around the agent to protect the site and the other

Lecture Notes in Computer Science 9

agents against malicious agents. The bundle packaging securely stores code, re-
sources, and state of the agent during the migration.

The platform may support the execution of agents with different life cycles such as
IBM aglets, JIMX Mbean, etc. However each kind of agents is managed by a special-
ized MJAgentManager. This manager invokes the callback methods on the services
published by each agent bundles. The migration managers, MJAgentEmigrationMan-
ager and MJAgentlmmigrationManager, deal with the agent roaming.

Agent State may be saved before emigration or restore after immigration (Java Se-
rialization, Java Externalization or XML Long Persistence Bean introduced in
J2SE1.4). The state is stored in an entry of the Bundle JAR file. The new state can be
signed by the platform before emigration and confidential data (for instance, trade
negotiation data) may be encrypted with the owner public key. Agent and platform
securities are based on built-in JAR signature and permission checking.

Migration managers uses HTTP POST requests to send and receive agent bundles
to/from another platforms. They use the standard HTTP and Servlet bundles from the
OSGi specification. Other protocols could be added such as UDP, UDP Multicast,
JavaGroups, JXTA Pipes, and Gnutella Responses to allows firewall passing or net-
work efficiency. As in the previous section with the collaborative environment, the
communication stacks can be install from a bundle enabling easy updating and exten-

MJAgent i i P :
@ N |mm,g?:t?°n I\hI'IIJAgent MJAgent MJAgent MJAgent : E
anager I
: Manager ! H Additionak
T i @ 1 O 8 O T
(V]3] - B L : H 1
E : for :
W MJAgent Beanome EMJAgents:
Emlgratlon Core :: i :

Manager i1 Inter-Agent Communication Core ::

OSGi
J2SE / J2ME

Fig. 4. Mobile Java Agent Platform

The Inter-agent Communication Bundle provides communication layers between
agents inside the platforms. Synchronous communications (i.e., method calls) is di-
rectly based on the IXC (Inter Xlet Communication) of the J2ME/CDC/Personal Basic
Profile. Asynchronous communications provides message producing and consuming.
A local version of the JMS message server provides two messaging models. In the
point-to-point model, a message is produced by one producer and consumed by one
consumer. In the publish-subscribe model, the published message is broadcast to zero
or more subscribers. Receivers and subscribers can filter the received messages.
Higher semantic communication layers such as KQML use these layers.

User interaction is useful at agent initialization when the agent is configured its
journey (the control panel for a file searching). The agent must check for GUI re-

Lecture Notes in Computer Science 10

sources of the current platform (classes from javax.swing.*, java.awt.*,
javax.microedition.lcdui.*, ...) and its permissions on them. Then it can display its
interaction panel.

Conclusion

This paper discussed how to use OSGi and Beanome to build dynamic application
frameworks. Dynamic application frameworks must support frequent and regular de-
ployment of new or updated software components, coarse- and/or fine-grained exten-
sibility of functionality (via dynamically loadable code), potentially non-stop execu-
tion, the need to limit resource consumption, and loosely administered control. The
three application domains examined in this paper, iTV, peer-to-peer systems, and mo-
bile agent platforms, require application components to be to deployed, updated, and
removed frequently since the machines involved in these applications may have lim-
ited resources, run non-stop, or support extensible functionlity.

These three domains benefit from OSGi since it provides sophisticated class load-
ing and security mechanisms for dynamically downloaded code. They also benefit
from Beanome, because it provides a component extension to OSGi in which applica-
tions are designed as a composition of actives services. Beanome manages the code
localization and versioning and resolves the dependencies between services. We are
currently experimenting with OSGi to provide iTV on a version of OSCAR running
on Personal Java and plan to test it with mobile agents and instantaneous collabora-
tion.

References

1. European Broadcasting Union, Multimedia Home Platform 1.0.2, DVB BlueBook
A057 Rev, February 2002.

2. OSGi, Open Service Gateway Specification, version 1.0, May 2000,
http://www.osgi.org

3. Hall R., OSCAR, Open Service Container Architecture, http://oscar-
osgi.sourceforge.net/

4. Cervantes H., Beanome a component model for extensible environments, http://www-

adele.imag.f/ BEANOME

5. O'Driscoll G, The essential guide to Digital Set-Top Boxes and Interactive TV, Pub.
Prentice Hall,2000

6. O'Driscoll G., The essential guide to Home Networking technologies, Pub. Prentice
Hall, 2001.

7. Ripeanu M., lamnitchi A., Foster 1., Mapping the Gnutella Network, IEEE Internet

Computing, January-February 2002, pp50-57

JXTA Project web site, http://www.jxta.org

9. Fuggetta A., Picco P.G., Vigna G., Understanding Code Mobility, IEEE Transactions
on Software Engeneering, Vol. 24, No 5, Mai 1998, pp342-361

10. Pham V.A., Karmouch A., Mobile Software Agents : An overview, IEEE Communi-
cations Magazine, July 1998, Vol. 36 No. 7, pp26-37

*®

11.

12.

13.
14.
15.
16.

17.

Lecture Notes in Computer Science 11

Aridor Y., Oshima M., Infrastructure for Mobile Agents: Requirements and Design,
2nd International Workshop on Mobile Agents (MA '98), Springer Verlag, Septem-
ber 1998. http://www.trl.ibm.com/aglets/index _e.htm

Yang S.C., Inglin D., Ge A., Home Appliance Control Using J2ME Technology on a
Wireless PDA, JavaOne2001 Conference, TS 2557,

JSR 129, Personal Basic Profile, http://www.jcp.org/jst/detail/129.jsp

JavaTV web site, http://java.sun.com/products/javatv/

Box D., Essential COM. Addison Wesley, January 1998

Object Management Group. OMG, Corba Component Joint revised submission,
August 1999

Java Embedded Server web site, http://wwws.sun.com/software/embeddedserver/

