
International Conference on Applications in Parallel and Distributed Computing , Caracas, Venezuela, Avril 1994

WEA, A Distributed Object Manager based on a Workspace hierarchy

Didier Donsez, Philippe Homond, Pascal Faudemay

Laboratoire MASI / UPMC, 4 Place Jussieu, 75 252 Paris cedex 05, France
Internet : {donsez, homond, faudemay}@masi.ibp.fr

ABSTRACT

WEA is our implementation of a new architectural model for virtual memory access, the
WorkSpace. It relies on a generalisation of client / server model and enables to build new
distributed applications. The workspace supplies uniform access to a distributed persistent
object store. This paper describes several ways of building multi-workspace architecture, and
an implementation of this architecture. This implementation is based on new operating systems
features.

Keyword Codes: C.2.4, D.1.5, D4.2
Keywords: Distributed Systems; Object-oriented Programming; Storage Management

1. INTRODUCTION

Object-oriented languages are a major advance in Software Engineering. However, the
developer usually has to use file systems for data archival. File systems do not enable a simple
memorization of pointers on the archive, or direct management of objects in the archive.
Persistent Object Managers enable full and reliable integration of the functionalities of object-
oriented programming languages, and of database systems.

Numerous Persistent Object Managers have been implemented [1-2] and commer-
cialized [3-4]. However most of these Object Managers remain unsuitable to the need of new
functionalities, or to performances equivalent to those of classical performance languages.

Among classical functionalities, full distribution on a local area network (LAN) implies
access by each client to a large number of servers. Groupware implies the possibility for several
transactions to see the modifications executed by each of them, and to choose among those
modifications according to a common procedure. Multimedia applications must manage
contiguous large objects, which can be accessed by adapted hardware (DMA).

An interesting approach to reach high performances is to entirely use low level mechanisms
which are implemented by operating systems. This approach has been successfully started by
ObjectStore [5]. This system manages mapping between objects identifiers [6], and physical
addresses, using memory mapping mechanisms which install a file in an application address
space.

New operating systems also enable application parallelism through Multithreading [7-8]. In
this approach, simultaneous activities, called threads, share the address space of an application.
Multithreading enables optimum use of arbitrary numbers of resources (processors, disks,
communications links…). We consider that these mechanisms must be the basis for designing
new Object Managers architectures.

Our research on a new type of Object Manager started with the criticism of an Object

2

Manager previously developed within our laboratory, VROOM version 1. VROOM implements
a performance-oriented object manager with a client-server architecture, but does not use these
system mechanisms.

The WEA system (WorkSpace Environment Architecture) uses memory mapping and
multithreading to implement a new architectural model, the WorkSpace model. This model
generalises the client-server architecture. It is based on a WorkSpace graph, where each
WorkSpace (WS) can simultaneously be client and server.

Reflections on basic concepts of WEA have been worked out by a team distributed in MASI
Laboratory and other laboratories. The WorkSpace model was first proposed by [9]. However,
several implementations of this model are presently in study. In this paper, we present the WEA
system, which is our implementation of the WorkSpace model.

In the following of this paper, we successively present the WorkSpace, several ways of
assembling Workspaces, and the internal WorkSpace mechanisms in WEA.

2. FUNCTIONAL ASPECTS OF WORKSPACE

A WorkSpace is the local applications environment through which they share a database in a
consistent and reliable way. For WEA, we define a framework for these applications, which is
based on three models. The programming model is a specification of the object model, the
execution model is based on transactional multi-threading, and the structural one distributes
objects in a transparent way.

That's why we define an entity called the WorkSpace. In a classical database system, the
WorkSpace is the space where a transaction memorizes or modifies its local data. These data are
made visible to other transactions after their "commit" (end of transaction). In the WorkSpace
architecture, the WorkSpace contains data which are directly or not visible by one or several
transactions. The WorkSpace is a large virtual memory for persistent and temporary objects.

2.1. The WorkSpace as objects programming model
The description and manipulation language of the WorkSpace model is the C++ object

oriented language [10]. WEA interface benefits from the power of this language, which has
become a de facto standard in the market of object-oriented languages. Persistency is orthogonal
to the object definition: any C++ object can be archived in a WEA database, whatever the
complexity of its definition. The objects model is also orthogonal to objects instanciation:
objects of a same class can either be created as persistent or temporary objects. A temporary
object can also be made persistent at commit time.

The language is extended by generic structured types as arrays, sets, lists or dictionaries.
These types are defined in a library which is delivered with WEA. This library proposes also
large objets, i.e. very large byte strings specially dedicated to multimedia data types.

In WEA, objects are accessed via identifiers which are unique references in the whole
distributed system, and are not re-allocated (except for large objects). Some objects can be
named by the developer, using character strings, and are used as entry points in the database.

2.2. The WorkSpace as transactional model
Classical transactional model [11] is well adapted to the WorkSpace operation. In order to

isolate modifications, the WorkSpace model defines a private WorkSpace for each transaction.
Each transaction is executed by a thread coupled with this WorkSpace.

Parallelism can be introduced in an application by instanciating several simultaneous
transactions. The application is no longer a list of sequential consultations and updates, but
becomes a set of concurrent activities which communicate through sharing objects. Locking
techniques of the transactional model offer a simple way to synchronize the access to the objects
by concurrent threads of control or transactions.

3

2.3. The WorkSpace as structural model
The WorkSpace is also an entity which manages distribution at objects level (objects state

and objects execution). The WorkSpace is a generic brick used to build distributed applications.

Database objects are distributed among volumes which are placed on different machines of
the network. Each volume is exclusively controlled by a single WorkSpace which has two main
characteristics : the accessibility of its private volumes by its transactions and the
communication with other Workspaces.

The WorkSpace can publish its private volumes to other entities of the network. The other
workspaces can subscribe to this WorkSpace volumes, in order to access pages of a volume in
a transactional mode. In this case, subscriber workspaces are clients of the publisher. Thus
using publish and subscribe, the WorkSpace unifies the classical notions of client and server.
The publication-subscription mechanism is not reserved to the volume exportation. It is
accessible to developers who want to write services according to the same connection principle.
Publication and subscription are not limited to a single level: a client WorkSpace can publish the
same service or another one.

In order to extend the WorkSpace possibilities, we define two types of behavior. The
passing WS can be considered as a data and lock cache for its transactions and for the
workspaces which subscribe to it. The retaining WS behaves as an including transaction with
regard to transactions and subscriber Workspaces. Each of these transactions can work locally
on a private context. Theses transactions can share their committed modifications without
validating them to local or distant volumes. These modifications are globally validated to the
database only when the WorkSpace commits. Combination of these two WorkSpace types
enables to define and build application models, which are presented at the next section.

3. THE WORKSPACE HIERARCHY

The WorkSpace offers both functions of a server and of a client. This paragraph enlightens
several ways of connecting Workspaces, in order to obtain either the classical client-server
architectural model or the more recent cooperative one.

3.1. Client-server model
The present information system of an enterprise is built on the classical client-server model.

In this model, each application executes a sequence of transactions on a client machine, and
accesses archived objects which are served by server machines. Client-server architectures are
designed straightforward. Three utilisations are considered. A WorkSpace operates as a server
by publishing one or several volumes of the database. Clients are also subscriber Workspaces
(fig. 1 WS A). There can also be an intermediary WorkSpace between a LAN and a WAN
that plays the role of a concentrator and an objects cache for clients belonging to the same Local
Network (fig. 1 WS B).

3.2. Model of application server
In an enterprise information system, the RPC model (Remote Procedure Call) may be used

for protected considerations to limit the migration of non-relevant objects through the network.
Some objects are too sensitive to be processed on a client. These objects must be executed by a
specific service, which defines the limits of utilisation of these data, on a machine which is not
one of the clients. In this case, the WorkSpace is an application server (fig. 1 WS D), which
publishes services implemented by local transactions. The implementer will have the possibility
either to use the basic communication mechanism (publication, connection, dialogue) used to
implement the "object service", or to define another one.

4

3.3. Groupware and cooperative work model
Groupware implements the cooperation between several applications or users for the

implementation of a common project. This type of cooperation may be controlled by a retaining
WorkSpace which does not immediately validate the modifications brought by the subscribing
transactions or client Workspaces (fig. 1 WS E). It is necessary to define a complementary
mechanism to choose a common object version before the WorkSpace commits.

3.4. Standalone operation mode or private database
A user must be able to execute transactions on a private database (fig. 1 WS F), without

any penalty resulting from pseudo-communications. In this case, there is a direct access to the
database. The code and the binary file are the same as if the database was a distant one.

workspace

applicative thread

computer
area

communication
between

workspace

communication
between

applicative thread

Applicative server

Public base server

applicati
on

compiler

editor
Doc1

long
transaction

user
session

WAN
cache
server

Public base
server

Public base
server

editor

cooperative
user

session

groupeware
server

editor

cooperative
user

session

request request

application application

Communication

through a WAN

editor

user
session

private

base

W
or

kS
pa

ce
 A

W
or

kS
pa

ce
 B

W
or

kS
pa

ce
 C

W
or

kS
pa

ce
 D

W
or

kS
pa

ce
 F

W
or

kS
pa

ce
 E

Figure 1 - WorkSpace Composition

4. WORKSPACE INTERNAL DESIGN

4.1. Multithreaded structure of the WorkSpace
The WorkSpace is a virtual memory address space of a process shared by several threads.

The WorkSpace structure is designed to enable several transactions to be executed simulta-
neously, to ask objects to one or several server WorkSpace, and to serve clients WS in an
asynchronous mode (fig. 2):

• The User Thread executes an application transaction. An application may instanciate
several transactions simultaneously. Transactions also benefit from a common cache of objects

5

pages loaded into the WorkSpace.

• Each pair of Mux / Demux Threads manages an asynchronous connection with a single
server WS. This enables several User Threads to send several queries without serializing them
by waiting the answers.

• Each pair of Server Threads manages a connection with client Workspaces. The STin
thread is in charge of receiving queries and the STout thread is in charge of answering them.
They are the counterpart of Mux / Demux threads on the server, and operate in the same way,
which results in an asynchronous dialogue between client and server.

The asynchronous operation mode of the WorkSpace is specially needed in the case of a
WorkSpace hierarchy with several levels. In this case, when a request is not satisfied on an
intermediate WorkSpace (§3.1), the request is transmitted to the inferior WorkSpace. While
waiting for a request, other requests may arrived and can be processed.

4.2. The Page interface
The role of the Page interface is to install the image of the accessed pages in the WorkSpace

address space. Modifications brought by a thread remain private to this thread until commit.

Memory mapping installs (or "maps") the image of a file (or of part of a file), in the address
space of a process [12]. The access to the file can result from any memory access in the
mapping area. Mapping may be shared, and in this case writes are directly executed on the file.
Private mapping preserves the original image of the file, by executing the writes on a private
copy of the modified pages (copy-on-write mechanism). The OS also enables to "protect" some
areas of the address space from read or write access, and to detect them when they occur.

These mechanisms are used to propose to the User and Server threads a transparent access
mode to database pages These threads don't have to be aware of:

• page localisation on local disks or on disks managed by distant servers
• swap between disks and primary memory
• page locking

The database is composed of several volumes. If the WS directly accesses a volume, this
volume is said to be local to the WS. If the volume is accessed via a server WorkSpace, it is
called a distant volume.

In the case of a local volume, memory mapping is used so that the WS threads can directly
map the volume (fig. 2a). The volume is composed of several segments, each one is a
contiguous block of pages mapped in memory. A thread which must access a page maps the
corresponding segment. The size of each segment is defined at its creation time. As the segment
is the mapping unit for threads, this size will determine space consuming in the virtual memory
of the WS.

The segment is mapped in a private mode by each thread: thus modifications remain private
to each thread. At the commit time of the thread, modified pages are copied into the segment via
a shared mapping of this one1. The previous image of each modified page is first copied in a
before-images log. This log makes possible to undo the threads which would fail during their
commit.

Page locking is executed by using the protection mechanism of the virtual memory. Initially,
pages of a segment mapped by a thread are protected against read and write access. Afterwards,
each new access to a page of this segment raises an exception which signals the protection
violation (UNIX signal SIGSEV). A (read or write) lock is then asked to the lock manager.
When the lock is granted (either immediately, or when the lock is relaxed by the owner
thread(s)), the thread is then restarted from the faulty instruction.

1 An optimization enables the Server Threads to use this shared mapping: they only modify pages at commit
time.

6

from a
client WS

Mux/DeMux

User Thread

O
4Go

WS
address
space

Swap Local
Archive

Log

Mux/DeMux

O 4Go

WS
address
space

User Thread

Swap Local
Archive

Log

STin / STout STin / STout

to a
server WS

WORKSPACE

WORKSPACE

Log

Log

b b a a

b b a a

User ThreadUser Thread

Figure.2-Internal operation of Workspaces:
mapping local segments (a) and distant
segments (b) by User and Server Threads.

In the case of a distant volume, a dialogue is
established between the client WS and the
server WS, for the importation of the needed
pages throw the network (fig. 2b). Imported
pages of a distant segment are thus copied in a
local file which plays the role of local image.
The WS threads have to map this image file for
accessing the pages of the distant segment. This
image is incomplete. When a page is not
present in this image, a request for this page
and its associated lock is sent to the server WS.
User Threads are blocked up until the page
return. Private mapping on the image file and
locking detection are identical to those of a local
segment. Image file mapping behaves as a local
swap of the pages of distant volumes. The
thread commit differs according to the operation
mode of the WS to which it is attached:

• In the case of a passing WS, pages
modified by each thread are copied into the
image file and are also sent back to the server
WS of the volume.

• In the case of a Retaining WS, modified
pages are only copied into the image file after
being locally logged. At commit time, the
retaining WS sends back to the server pages
modified by committed threads. As we shall see
in the paragraph about concurrency control, this
phase also corresponds to the release of write
locks.

Memory mapping theoretically enables to
install up to 4 GBytes of objects in the virtual
memory of a WS during its "lifetime". This
limit is too low for longer service time Server WS.

Therefore, a reclaiming mechanism releases the mapping of some segments in order to
allocate it to other ones, somewhat in the manner of a swap. It must be noticed that segments
mapped by User Threads are not subject to swap.

4.3. The Object interface
The Page interface described at previous paragraph does not know the internal pages

structure. It is completed by the Object interface which structures pages into object containers.
The Object interface enables to create and destroy short and long objects, and executes their
dereferenciation. At this level objects are not structured.

4.3.1. Short Objects, Long Objects
Short objects are not structured and receive instances of C++ classes defined by the

Language interface. Short objects contain the identifier of the object class, and the memory
pointer to the table of virtual methods of the C++ instance. This pointer is only valid for one
WS, therefore it is updated (or "refreshed") each time it is stored in a new WS. A short object
can also contain persistent references to other objects. The short object must be archived within
a single page. The long object is dedicated to the storage of a single data type: byte strings,

7

which can be multimedia data such as images and sounds.

At creation time, a persistent object may be placed "nearby" another existing object. In this
case it is placed in the same page if it is possible. This object placement optimizes disk and
network access when both objects are used at the same time.

4.3.2. Object identifier and dereferenciation
Object access is usually done through an object identifier, which is a unique reference

through the whole database and which is not re-allocated [6]. The format of an object identifier
differs according to the instanciation mode (persistent or temporary), and also according to the
object type (short or long object). The identifier of a temporary object is a physical address. The
identifier of a short persistent object is composed of a volume number (which is used to localize
its server WS), a segment number within the volume, a page number within the segment, and
an object number within the page. As a long object occupies an integer number of pages in a
segment, the identifier of a long persistent object is composed of volume number, segment
number, and the number of its first page within the segment.

Dereferenciation of an identifier is the translation of an object identifier into the memory
address of the place where there is an image of this object. This operation is a critical one in
persistent object managers. In WEA, this translation is done in two steps. The first step
calculates the segment mapping address by linear hashing. Because hashing is done on segment
number, the hash table consumes very little space. The second step is an indirection at page
level and returns the relative position of the object within the page. This is done by indexing an
indirection array within the page header. This step only implies a few instructions.

The identifier size is one of the configuration parameters of the system. The identifier can be
coded on 32 bits or 64 bits. A 32 bit coding offers a maximum of 32 GBytes of short objects
at a same time and 4 TBytes created in the whole database lifetime (for a database without long
objects). The size of a database made of both kind of objects belong to this 32 GB - 4 TB
range. The long objects database includes at most 4 TBytes of data at the same time (for a
database without short objects). Coding on 64 bits offers a quasi-unlimited database size, but
increases the size of persistent references within objects.

4.3.3. Object creation strategies
Temporary objects are allocated in a private, temporary area of the thread. At commit time,

temporary objects are copied from the temporary area into already write-locked pages. If there is
not enough free space, the thread applies for an interval of free pages in order to place the
remaining objects. These new persistent objects receive a new identifier based on their new
page address. References to these objects must be updated.

When there is no more room to create persistent objects in the thread or WorkSpace pages,
two strategies are possible. First it is possible to create new pages if needed during transaction.
A second strategy is to create the objects in the temporary area, and wait for the commit to place
these objects in other pages obtained and locked further. This strategy returns a better page
occupation ratio, but implies a copy of objects within memory.

4.4. The Language interface: objects typing
While the Objects interface manipulates non structured objects, the role of the Language

interface is to manage a metabase of the C++ classes used by Workspaces, and to instanciate
these classes in the case of short objects.

4.4.1. Tools
This interface uses a parser and a C++ compiler. The parser extracts the list of the C++

classes and adds them to the database. For each of these classes, it also generates some methods
code. The operator ->() overload the dereferenciation operation, and some methods "refresh"
the pointer towards the virtual methods table of the class. Each instance includes a header, with
the corresponding absolute class number. The C++ compiler is any compiler of the marketplace

8

(ATT, GNU,…). It generates the code of applications from the source code delivered by the
developer, and from the methods produced by the parser. Standard development tools such
browser or debugger remain usable.

4.4.2. Transaction Example
We consider the following database schema (fig.3) and two transactions (fig.4a and fig.4b):

Persistent classes definition is identical to C++ semantic. A class may contain members of
fundamental types (lines s3-s7) or pointers to instances of persistent classes. A member may be
a standard structured type such as union, class, array (s3-s4) or a generic collection
defined in the WEA library (s5). The colldef keyword defines new objects collections. Class
definition also includes declarations of virtual or ordinary methods. These methods can be
"inlined" or defined in the user library.

s1. colldef List(Person) PersonList;

s2. class Person { // private:
s3. char name[20];
s4. p_Person parents[2];
s5. PersonList children;
s6. public:
s7. int age; // public member
s8. inline Person() { age = 0;}
s9. Person(char* name,
 p_Person father=NULL,
 p_Person mother=NULL);
s10.};

fig.3. the "Bible" Database Schema

Database access begins with a connection of the WS to the database (a1). Transactions may
be then instanciated on this WorkSpace(a2). Persistent objects are created as C++ objects with
the new() operator (a3). An object may be placed nearby another one at creation time (a4). It
may be created as temporary (b5) and then made persistent before transaction end (b7). An
object may be named by an external name (a5-a6) and thus it can be retrieved during another
transaction (b3-b4). Object members are handled in a classical way by the ->() operator in
functions (b6) or in methods (s8). C++ Member Access Control is respected (s2-s6). Member
updates implicitly locks the object page (b6). A transaction ends by a commit or an abort (a7).

a1. WEA::connect("Bible");
a2. W_Transaction *trans = WEA::newTrans();

a3. p_Person eve = new Person("Eve");
a4. p_Person adam= new(eve) Person("Adam");

a5. adam->setName("FirstMan");
a6. eve->setName("FirstWoman");

a7. trans->commit(); // or trans->abort()
a8. WEA::disconnect();

b1. WEA::connect("Bible");
b2. W_Transaction *trans = WEA::newTrans();

b3. p_Person fman("FirstMan");
b4. p_Person fwoman("FirstWoman");

b5. p_Person abel=
 new(TEMP) Person("Abel",fman,fwoman);

b6. abel->parent[1]->age += 1;
b7. abel->persistent();

b8 .trans->commit(); WEA::disconnect();

fig.4a. initialize the "tree of life". fig.4b. add an new Person in the "tree of life".

9

5. DBMS FUNCTIONALITIES

5.1. Concurrency control: hierarchical Callback Locking
Wang and Rowe compare several concurrency control methods for client-server database

architectures [13]. The results of their simulations underscore the advantages of the Callback
Locking method (CL). CL is based on two-phase locking (2PL), but it keeps on the client a
cache of read locks obtained by its transactions. Write locking, on the opposite, implies to
invalidate the read lock in each client cache. This read lock is released by the client WorkSpace
when it is asked for and when all reading transactions have committed. The server WorkSpace
is used to centralise and broadcast the lock queries. This method is specially adapted to
situations where transactions of a same client reference the same objects. This often should be
the case in applications which use Workspaces.

We have adapted Callback Locking to the hierarchical organization of the WorkSpace
architecture. Each nesting level becomes a lock server for the upper level. However, the WS
can chose to inhibit the read lock cache and to locally operate in a way similar to classical 2PL.

The WorkSpace operation mode also influences the release of write locks. Passing
WorkSpace releases write locks after each thread commit, while the Retaining WorkSpace keep
them until its own commit.

The lock granule is the page. This grain enables detection of locks queries by the operating
system virtual memory mechanisms, which is not possible with Object grain.

The WorkSpace does not know precisely the status of locks set by its clients threads.
Therefore it is not possible to implement a dependency graph between threads to detect
deadlocks. Deadlocks are detected by a time-out, which raises an exception in the thread.

5.2. Reliability and restart.
Restart is implemented in a classical way with a before-image log. In a Retaining

WorkSpace, logging is also used to undo the threads which abort modifications done on distant
volume. In a future version of WEA, these before-images may also be used to extract historical
versions of data.

5.3. Security and access rights
WEA uses the access rights mechanisms and identification mechanisms of Unix. The

WorkSpace possesses the user identifier (UID) and the group identifier (GID) of the user who
starts it. In a volume, all objects have the same access rights (owner, group, other). Using this
control level do not introduce hole in the system security.

6. CONCLUSION

WEA is a generic brick to design distributed applications corresponding to different models
(classical client-server, application server, etc…). It offers a transparent access to a large virtual
memory of objects, which is distributed on a network of workstations. Its C++ interface
enables it to benefit from the power of this language. Internal design of Workspaces uses
advanced techniques proposed by the new operating systems. WEA is at the cross-road
between system and language, which enables it to benefit of technological advances, while
remaining independent of implementations.

Design of WEA begun in October 1992 and a first prototype will be completed in December
1993. Future works may extend the WorkSpace to support cooperative work and versions.
This extension implies a specialisation of the data model and of the transactional model. We also
intend to use WEA as the software environment for a powerful, object-oriented, associative
board [14].

1 0

REFERENCES

1. M.J. Carey, D.J. DeWitt, J.E. Richardson, E.J. Shekita, "Object and File Management in
the Exodus Extensible Database System", VLDB'86.

2. O. Gruber and L. Amsaleg and L. Daynes and P. Valduriez, "EOS, An Environment for
Object-Based Systems", Proc. of the 25th Hawaii International Conference on System
Sciences", January 1992, Vol 1.

3. O. Deux et al, "The Story of O2", IEEE transactions on knowledge and data engineering
vol.2 n°1 1990

4. ATT Bell Laboratory, "ODE 2.0 User's Manual", 1993

5. C. Lamb, G. Landis, J. Orenstein, D. Weinreb, "The ObjectStore Database System",
Communication of the ACM October 1991, Vol. 34, No. 10

6. S. Khoshafian and G. Copeland, "Object Identity", MCC Research Report, 1986.

7. IEEE, "POSIX 1003.4a Draft 6 - Threads Extension for Portable Operating Systems",
Feb 1992.

8. SunSoft, SunOS 5.2 Guide to MultiThread Programming, Answer Book, March 1993

9. E. Abécassis, Private Communication, 1993

10. M.A. Ellis, B. Stroustrup, "The Annoted C++ Reference Manual", Addison-Wesley, 1991

11. J.F.Garza, W Kim, "Transaction Management in Object-Oriented Database System", ACM
SIGMOD 1988.

12. SunSoft, SunOS 5.2 Memory Management, Answer Book, March 1993.

13. Y. Wang, L.A. Rowe, "Cache Consistency and Concurrency Control in a Client/Server
DBMS Architecture", ACM SIGMOD 1991

14. D. Archambaud, P. Faudemay, A. Greiner, "RAPID-2, An Object Oriented Associative
Memory Applicable to Genome Data Processing", 27th Hawaiin International Conference
on System Sciences, January 1994.

