
Towards a Reference Model for Implementing the Fractal

Specifications for Java and the .NET Platform

Lionel Seinturier(1), Nicolas Pessemier(1), Clément Escoffier(2), Didier Donsez(2)

(1) INRIA Futurs - LIFL, Project Jacquard/GOAL, 59655 Villeneuve d’Ascq, France
(2) Univ. Grenoble, LSR-IMAG, Adele Team, 38041 Grenoble, France

{seinturi,pessemie}@lifl.fr, {Clement.Escoffier,Didier.Donsez}@imag.fr

1 Introduction

So far, several implementations of the Fractal specifications have been proposed. These implemen-
tations propose frameworks for programming with Fractal in a target language (Java, C, Smalltalk,
C++). The general principles of implementing the specifications are common to all these frame-
works. However, as far as we know, no concrete piece of software or no common set of internal
interfaces have ever been shared between them.

In this paper, we report on a reference model which has been set up to support several imple-
mentations on the Fractal Specifications. This model has been derived to build a Java personality
called AOKell, and FractNet, a personality for the languages of the .NET framework. The origi-
nality of this model is to be based on the concepts of Aspect-Oriented Programming (AOP) [1].

Section 2 presents the general architecture of the reference architecture. Section 3 reports on
the two personalities, AOKell and FractNet. Section 4 shows some performance measurements.
Section 5 concludes this paper.

2 Architecture

2.1 Background

Two dimensions can generally be found in a Fractal implementation: the business dimension and
the control dimension. The former is responsible for implementing the core functionalities of the
application, while the latter provides a level of supervision and management on the application.

Fractal defines some artefacts to implement the business dimension with components: the
notion of a provided interface, a required interface, a component type or an interface type. The
control dimension, so called controllers, deals with functionalities such as starting/stopping the
components, managing their bindings, their attributes, or the containment hierarchy. The scope
of the control dimension is fully open: there is no restriction on what the control dimension should
or shouldn’t do. It is up to the framework developer to design and implement the control functions
s/he needs.

The role of a Fractal framework implementor is then: (1) to support the API defined in the
specifications, (2) to provide some structures for implementing controllers, (3) to provide some
mechanisms for integrating the control and the business dimensions, i.e. to apply the control
functions to the components. For example, Julia [2], the Fractal reference implementation, uses
mixins [3] to perform this integration. The originality of the approach presented in this paper
is to use aspect-oriented programming (AOP) [1] for integrating the control dimension with the
business one.

Aspects [1] are software entities modularizing concerns which are said to be crosscutting.
The code of such concerns is not properly modularized in one unique entity (class, procedure,
function, etc.), but is spread around many different locations. This phenomenon, known as code

1



scattering, hinders the development and the maintenance of applications. AOP promotes a way
of remodularizing these concerns, with the notion of an advice code, and a way of integrating
them in the rest of the application, with the notion of a pointcut. By this way, AOP complements
existing programming styles, object-oriented, procedural, functional, etc., by removing scattering
and producing software which is more modular. AOP has been the subject of many studies in the
past years and as been applied to many domains, including middleware (just to name a few works
in this area, see for example [4], [5] or [6]).

2.2 Aspect-Oriented Architecture

Our reference model defines three layers: the two above-mentioned dimensions, application and
control, and a middle layer which is aspect-based (see Figure 1). This aspect layer is responsible
for modularizing and integrating the control functions into the application. This layer supervises
and controls the applications and delegates the concrete realizations of these functions to the
control layer.

Figure 1: High-level view of the reference model.

The aspect layer defines one aspect per control functions. For example, the seven basic con-
trollers of Fractal (attribute, binding, factory, component, content, naming, super) are each asso-
ciated to an aspect. Any new controller which needs to be added must comes with its aspect. The
aspects perform two basic tasks: (1) code advising, (2) code injection. Advising is an AOP related
term which refers to the ability of intercepting some events of the application (such as method
calls, method executions, field writes, etc.) and performing treatments before and/or after these
events. Code injection refers to the ability of extending the implementation of a component with
new methods, interfaces or fields.

Code advising is used in the aspect layer to control and supervise the application layer. For
example, method executions can be intercepted, blocked or released depending on a particular
life cycle policy. Code injection is used to enhance the functionalities of a component with new
interfaces, such as an interface for managing binding, names, or any other control interface.

In our model, while aspects supervise and control, they do not realize themselves the con-
trol functions. They delegate it to the control layer. For example, the aspect in charge of the
management of bindings, injects a stub for the BindingController interface which delegates the
implementation of this interface to an object of the control layer. This pattern is a frequently
used practise of AOP: it allows decoupling the integration logic (aspect layer) from the concrete
realization of this logic (control layer).

This architecture are been declined into two implementations, one for Java (AOKell) and one
for the .NET platform (FractNet). They are presented in the next sections. Furthermore, some
parts of AOKell have been reused in FractNet. The performances of these implementations are
summarized in Section 4.

2



3 Implementations

This section reports on the two implementations, AOKell and FractNet, which have been derived
for the previous reference model. They are briefly presented in sections 3.1 and 3.2. Section 3.3
provides a short description of the code elements which have been shared between the two imple-
mentations.

3.1 AOKell

AOKell1 is the Java implementation of our reference model. AOKell performs a compile-time
(CT) integration of control functionalities into components. As a matter of comparison, Julia [2],
the Fractal reference implementation, performs a load-time (LT) integration based on bytecode
engineering performed with the ASM library [7]. While LT integration is somewhat more flexible
than CT integration, CT integration leads to a solution which is more type safe and easier to
debug.

Two versions of the aspect layers are available with AOKell: one based on AspectJ and one
based on Spoon.
AspectJ [8] is the leading tool for AOP. A compiler is available and many tools, including plugins
for IDEs, have been developed. While the most common usage of AspectJ is for weaving aspects
at compile-time, AspectJ can also be used as a load-time weaver.
Spoon [9] is a general purpose tool for transforming Java programs. A strongly-type template
mechanism is available for writing any kind of transformations including the ones (code advising
and code injection) which are similar to the ones performed by aspect weavers. Spoon is architec-
tured as a back-end of the javac compiler.
The functionalities of the two versions are strictly equivalent. However, as we will show it in Sec-
tion 4, the Spoon-based version of AOKell performs better than the AspectJ-based one. Indeed,
being a general purpose tool for code transformation, Spoon allows generating code which is more
aggressively optimized.

As an additional feature, AOKell allows developing the control layers as assemblies of compo-
nent. For that, we introduce the notion of a control component. A control component implements
a given control function (e.g. managing bindings, lifecycle, attributes, etc.) and is integrated into
the application with an aspect. The idea is that controllers are seldom autonomous, but that,
most of the time, they require the collaboration of other control components. When programming
these controllers as plain old Java objects (POJO), the interaction schemes between controllers
end up being dug into the code as references to other objects. This hinders modularity and leads
to code which is poorly structured. The idea is then to apply to the control layer the same prin-
ciples which have been applied to applications: capture the architecture of the control layers with
an ADL (in our case Fractal-ADL), and implement control membranes as assemblies of control
components. AOKell provides a set of 13 componentized control membranes, corresponding to the
ones which can be found in Julia. The development of a new control membrane is then a matter
of writing a new assembly of control components. Although the componentization of membranes
is available with AOKell, this is not a mandatory feature: developers can still write controllers
and membranes as POJOs.

3.2 FractNet

FractNet2 is the implementation of our reference model for the .NET platform. While the aspect
layer is specific to FractNet, the control layer of AOKell is reused as this with FractNet. The Java
implementation of this layer is compiled with the Visual J# compiler to produce a regular .NET
assembly which can be linked with the rest of the application.

The aspect layer of FractNet is implemented with the AspectDNG [10] aspect weaver. As-
pectDNG performs a compile-time weaving of aspects on compiled .NET assemblies. This ap-

1http://fractal.objectweb.org
2http://www-adele.imag.fr/fractnet

3



proach has two main advantages: an application can be woven even if its source code is not
available, and AspectDNG can weave applications written in any language supported by .NET
(C#, J#, VB.NET, Managed C++, etc.). By this way, Fractal applications with FractNet can be
written in any languages that can be compiled into a .NET assembly.

3.3 Shared code elements

The source code of AOKell and FractNet is organized in three main packages (see Figure 2): glue
implements the aspect layer defined in the reference architecture, lib implements the control layer,
component is a library of predefined components (this library contains the bootstrap component).
A fourth package, tools, provides some utility tools which are not mandatory for building and
running a Fractal application with AOKell or FractNet.

Figure 2: AOKell and FractNet packages organization.

As summarized in Table 1, the glue package is specific to AOKell and FractNet, whereas the
component and lib packages are common to both implementations. These packages are written
in Java. They are compiled with the standard javac compiler in the case of AOKell, and with the
Visual J# compiler in the case of FractNet.

AOKell FractNet % (lines of source code)
glue AspectJ or Spoon AspectDNG 12%

component 1%
lib Java 82%

tools 5%

Table 1: AOKell and FractNet code sharing.

The figures given in the last column of Table 1 correspond to the percentages in terms of lines
of source code for each package. AOKell with Spoon contains about 10,000 lines of code. The
glue package, which contains 12% of the source code in this case, is the only one to be specific to
either AOKell or FractNet. The remaining 88% are shared between the two implementations.

4 Performance Measurements

This section reports on a microbenchmark which has been conducted with a simple application
containing two components: a client component and a server component. The server component
provides an interface with eight methods. Each method owns a different signature, either without
parameters, or with primitive parameters, or with object references parameters, and/or with return
types.

4



The measures are taken on 2Ghz Pentium 4 PC running Windows XP Pro, Sun JDK 1.5.0 and
the Microsoft .NET Framework 2.0. A warm-up phase is performed before taking measures to
avoid bootstrapping and class loading costs. The test consists of series of calls emitted from the
client component to the server component. In table 2, the figures correspond to the times taken by
8,000,000 calls (1,000,000 per method defined in the interface provided by the server component).
The given figures correspond to the average value of 4 runs.

Operation execution time
no lifecycle lifecycle

Fractal/FractNet 228ms 264ms
Fractal/AOKell 2.0 (Spoon based) 212ms 221ms
Fractal/Julia 2.1.1 (option MERGEALL) 234ms 396ms
Fractal/AOKell 1.0 (AspectJ based) 212ms 443ms

Operation execution time
without interception with interception

Pure .NET 2.0 189ms
Pure Java 1.5.0 122ms 172ms
AspectJ 1.2.1 206ms
JBoss AOP 1.1.1 1046ms

Table 2: Cost of invoking and executing an operation (x 8,000,000).

This microbenchmark provides two series of measures depending on whether the lifecycle con-
troller is activated or not. As a matter of comparison, we also provide some reference costs in
pure Java or pure C#, and with three interception techniques: AspectJ, JBoss AOP and statically
generated proxy classes in Java.

The conclusion which can be drawn from this microbenchmark is that, in the case of AOKell,
Spoon delivers better performance than AspectJ. The difference between AOKell and Julia mainly
comes from some difference in the semantics of the lifecycle controller implemented by these two
frameworks. The performances of the Java and .NET implementations of Fractal are roughly
similar, the Java ones being a little more performant.

5 Conclusion

This paper presents two implementations of the Fractal specifications: one, AOKell, for program-
ming Fractal applications with Java, and one, FractNet, for programming with the languages of
the .NET framework. Compared to other existing implementations of Fractal, the novelty of our
approach is to provide a reference model which defines some general design principles for deriv-
ing frameworks implementing the specifications. The originality of this model is to be based on
concepts of aspect-oriented programming.

Three layers can be found in the model: the application layer, the aspect layer and the control
layer. The implementation of the control layer is shared between the two implementations, leading
to a high level of code reused: about 88% of the FractNet code comes from AOKell (written in
Java, this code is compiled for .NET with the Visual J# compiler). The aspect layer is specific to
each implementation. Two versions of the layer exist for AOKell, one written with AspectJ [8],
and another one written with Spoon [9] (the latter performs better than the former). The aspect
layer of FractNet is written with AspectDNG [10]. The benefit of using AspectDNG is that any
.NET assembly can be woven with the control layer. Thus, programming Fractal applications with
FractNet can be conducted, not just in one language, but in any language which compiles code
into .NET assemblies.

5



As a matter of future work, we plan to use our frameworks, both AOKell and FractNet, to
build dynamic service-oriented platforms [11]. Another direction would consist in defining a SPI
(Service Provider Interface) associated to the reference model. This SPI would provide a more con-
crete framework for reusing finer grained piece of code between different Fractal implementations.
Concerning FractNet, we plan to migrate to another .NET aspect weaver since the AspectDNG
project seems to be discontinued.

Acknowledgments

The work on AOKell is partially funded by France Telecom under the external research contract
#46131097.

References

[1] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In Proceedings of the 11th European Conference on Object-
Oriented Programming (ECOOP’97), volume 1241 of Lecture Notes in Computer Science,
pages 220–242. Springer, June 1997.

[2] E. Bruneton, T. Coupaye, M. Leclercq, V. Quema, and J.-B. Stefani. An open compo-
nent model and its support in Java. In Proceedings of the 7th International Symposium on
Component-Based Software Engineering (CBSE-7), volume 3054 of Lecture Notes in Com-
puter Science, pages 7–22. Springer, May 2004.

[3] G. Bracha and W. Cook. Mixin-based inheritance. In Proceedings of the Conference on Object-
Oriented Programming: Systems, Languages and Applications (ECOOP/OOPSLA’90), vol-
ume 25 of SIGPLAN Notices, pages 303–311. ACM Press, October 1990.

[4] A. Colyer and A. Clement. Large-scale AOSD for middleware. In Proceedings of the 3rd
International Conference on Aspect-Oriented Software Development (AOSD’04), pages 56–
65. ACM Press, 2004.

[5] C. Zhang and H.-A. Jacobsen. Quantifying aspects in middleware platforms. In Proceedings
of the 2nd International Conference on Aspect-Oriented Software Development (AOSD’03),
pages 130–139. ACM Press, 2003.

[6] U. Kulesza and D. Silva. Reengineering of the JaWS web server design using aspect-oriented
programming. In Workshop on Aspects and Dimensions of Concerns at ECOOP’00, July
2000.

[7] E. Bruneton, R. Lenglet, and T. Coupaye. ASM: A code manipulation tool to implement
adaptable systems. In Journées Composants 2002 (JC’02), November 2002.
asm.objectweb.org/current/asm-eng.pdf.

[8] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold. Getting started
with AspectJ. Communications of the ACM, 44(10):59–65, 2001.

[9] R. Pawlak. Spoon: Annotation-driven program transformation the AOP case. 1st Workshop
on Aspect-Orientation for Middleware Development @ Middleware’05, November 2005.
spoon.gforge.inria.fr.

[10] T. Gil and J.-B. Evain. AspectDNG. DotNetGuru, 2005.
www.dotnetguru.biz/aspectdng/.

[11] C. Escoffier, D. Donsez, and R. S. Hall. Developing an osgi-like service platform for .NET. In
3rd IEEE Consumer Communications and Networking Conference (CCNC’06). IEEE, Jan-
uary 2006. www.ieee-ccnc.org/2006/.

6


