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Abstract./n this paper, we present a mixed MIMD | SIMD
execution model for a reconfigurable computer. This model is
adapted 1o the use of a specialized associative coprocessor,
embedded in this host machine. A main characteristic of the
model is that it uses four types of processes (decoding, calculus,
coprocessor communication and transaction manager), and that
in principle one process of each type is allowed on each
processor. Time intervals are allocated to operations into
partitions of the set of processors. Transfers are usually limited
to identifiers, logical addresses and locks. Simulations display a
high level of processors occupation. Therefore the machine yield
may be very high, and the operations should be very fast.

1. Introduction.

Databases seem to have very good prospects for the next
ten years. Relational or object-oriented database systems [Codd
1970, Stonebraker 1976, Lécluse & Richard 1989, Abiteboul &
Kanellakis 1989, etc..] offer a much greater flexibility than file
systems. However, many applications still use simple files. To a
great extent, this results from performance limitations of database
systems, which are still rather far from real-time response times,
specially in the case of large source relations. Numerous specific
architectures, both hardware and software, have been recently
developed in order to increase the performances of DBMS (data
base management systems). These architectures rely on
specialized circuits and highly parallel multiprocessors
architectures. :

The purpose of specialized processors of machines is to
increase the performances by at least one order of magnitude,

versus the general processors existing of currently used at the

same time. Some specialized architectures, which we shall gall
co-architectures, are designed to be embedded in general host
machines, and increase the performances of most general
processors or machines, when used for database operations. In

CH2895-1/90/0000/0056$01.00 © 1990 IEEE

this paper we consider the use of an associative co-architecture
called Rapid [Faudemay & al. 1987, Faudemay & al. 1988 al.
embedded in a multiprocessor host machine.

A large variety of specialized circuits has been designed
for database and knowledge base operations. Specific circuits
have been designed for sorting [Lee & al. 1987, Kitsuregawa
1989, Tanaka , etc..}, text retrieval [Haskin & Hollaar 1983,
Takahashi 1987, Ben & Choi 1989, Lee & al. 1989, etc..] or
more specialized operations such as aggregates calculus
[Abdelguerfi 1989]. Some more general processors have also
been proposed, such as Datacycle [Lee & Herman 1987], and to
some extend Prolog processors. An other trend is the use of
associative memories [Chisvin & Duckworth 1989], but most of
them are still subject to important limitations such as a uniform
record and field length within a relation, one byte words, etc...
The use of specialized circuits in databases is sometimes
criticized in the database community, based on the argument that
the progress of general processors makes useless the design of
specific circuits. However this argument can also be opposed to
all research efforts done on ASIC circuits (Application Specific
Integrated Circuits), which are developing very fast [Musgrave
1989, De Micheli 1988].

Multiprocessor architectures are cither dedicated database
machines, such as DBC 1024 (Teradata) , Tandem [Tandem
1988] or Copernique computers, or general host machines which
may also be used for the embedding of 2 co-architecture. In these
architectures, communications between processors are a major
limiting factor of the power of the machine. Minimisation of
interprocessor transfers has been the subject of numerous works

~ based on hashing and clustering techniques in order to increase

the locality of data [Fushimi & al. 1986, Cheiney 1986,
Copeland 1988]. One target of the paper is to study a

_ minimisation of the mterproctssor oouunumcauons, andalsoof

the system calls. The increase of thc memory size associated to

each processor, and the use of nomvolmlc memories [Agrawal
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& al. 1989, Eich 1989], are also part of the solutions to reduce
the needed communications bandwidth. We shall not consider
them in this paper.

Rapid is an associative coprocessor with more general
functionalities, and is designed to be used in a co-architecture
within a general host machine. It is a parallel circuit, whose
degree of parallelism only depends upon the technology and the
number of components connected to the host machine bus.
Rapid's instruction set includes relational algebra operations,
plus text retrieval operations, aggregates and sorting. The object
of this paper is the embedding of such a coprocessor in a highly
parallel host machine. In RAPID-MP (Rapid embedded on a
Multi-Processor Host), we embed one or several Rapid
coprocessors in each cluster of the host machine. The operations
take place where data and code are placed. Exchanges between
processors are in principle limited to exchanges of identifiers
[Abiteboul & Kanellakis 1989]). The performance objective of the
architecture is to execute the operations in a duration which
should remain comparable to that of the transfers of identifiers on
the network.

In paragraphs 2 and 3 we present the principles of the
Rapid coprocessor and of the target machines considered in this
paper. These machines are limited here to the "reconfigurable”
machines, based on a hierarchy of crossbars. In paragraph 4, we
present the main choices of our execution model. Paragraph 5
presents the main lines of our simulation, and paragraph 6 its
results. Paragraph 7 concludes.

2. Rapid principles

Rapid is an associative co-architecture for data and
knowledge bases. This co-architecture is realized by the
embedding of a fine grain parallel coprocessor, implemented in
VLSI, within a host machine. The coprocessor is dedicated to
parallel evaluation of l:ogical formulas on records or tuples. Its
data are tuples or more generally objects, and it returns the
boolean value of a global formula, sequences of identifiers of the
objects which satisfy such a formula, or the number of these
objects [Faudemay & al. 1987].

Rapid coprocessor is mainly composed of an array of
processing elements (PEs), in which the control and some data
(the subexpression values) are propagated from one PE to the
following ones, or for some problems, to the previous ones. PEs
have a hardwired control, and a reduced instruction set which
includes the relational algebra operations. It thus executes a very
high level language [Faudemay & al. 1988 a]. A specific
resolution structure which is dynamically reconfigured by data is
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distributed between PEs. It executes the query resolution by
hardware, which is mandatory in this type of processor. It is
therefore a database coprocessor, which cannot be used without
a general processor and has a specific instruction set. However,
the coprocessor instructions are written by the general processor
into the coprocessor, and thus the coprocessor may be used with
any type of host machine (it is a memory mapped coprocessor).

The feasability of the processor implied that it would be
possible to integrate several processors per component, in order
to obtain a satisfactory degree of parallelism. The first version of
the PE occupies 3.5 * 3.5 mm2 in 2 microns CMOS technology
with two layers of metal. Rapid has been designed in full custom
VLSI, with lambda design rules. In this version, the cycle time
of the PEs is presently 120 ns for the processing of a 22 bits
word, including 16 data bits and 6 special bits (null bytes, etc..).
The real duration of operations mainly depends, presently, upon
the duration of the transfers on the host machine bus, and the
host cycle time. As an example, the duration of a simple join of
1000 tuples by 1000 is presently about 22 milliseconds with a
Motorola 68020 at 16 Mhz, according to a cycle by cycle
simulation. Most of the time of the operation is due to the
software layer operation. -This layer is presently being
implemented. In an ideal environment, the response time could
be about 1 millisecond in a 1 micron technology. Further speed
improvements are possible within the same technology.

The processed objects are transfered into the PEs without
addressing them. The coprocessor is interfaced to the host as a
memory, all input/ output registers of the PEs being at the same
address. Each PE processes at most one predicate,
corresponding to the comparison of an object element stored into
the coprocessor, with an object element broadcasted on the host
machine bus. If a predicate evaluation is distributed on several
PEs, each of them evaluates one "long word" of each of both
operands, the size of a "long word" being presently 32 bytes.

Each long word is composed of a number of short words inferior
or equal to the capacity of the local memory of the PE (16
words). It has been shown that this processor has the capacity of
processing any data or knowledge base query.

The Rapid coprocessor is an extension of associative
memories, but opposite to the classical associative memories, it
makes possible the retrieval of wples or records satisfying a
complex logical formula. Other specialized database circuits exist
but implement only part of its functions. The future evolutions of
Rapid are directed towards a minimisation of the 1/O transfers
outside the component. A future target is an increase in the ratio
between the number of PEs (or of useful memory) and the
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figure 1. Rapid coprocessor.

silicum area. In the long range, the purpose may be to keep part
of the data within the circuit between operations. Presently, the
data which are stored in Rapid are hashing buckets, and they
only remain within Rapid during one step of an operation.

On monoprocessor host machines, the coprocessor
operation is managed by a software layer, which interfaces it
with the optimizer of a DBMS or KBMS, and with an adapted
object manager. This layer is composed a single process. Its
main functionalities are the distribution of the cpu time among
transactions, an optional concurrency control method, the
execution of multi-level hashing and of attribute calculus, and the
transfers between the coprocessor and the general processor.
Complementary functionalities may be added later, such as the

management of hard real time [Stankovic 1988). In order to

obtain response times compatible with the coprocessor speed,
this layer is implemented using a "factorization" method, where
each logical step may be executed independtly from the others. A
global presentation of Rapid methods and results is outside the
scope of this paper.

Environment: reconfigurable machines.

In the Rapid project we are presently studying a
Rapid-MP;conﬁguration, which results from the embedding of
Rapid on 4 multiprocessor host machine. The multiprocessors
which may be considererd belong to two categories: tightly
coupled ni_achines, where processor communicate through a
common tiwmory, and loosely coupled machines (sometimes
called ”sh:ared nothing”) where processors communicate by
message p:assing‘ In this paper, we study the case of loosely
coupled ar¢hitecmms.

These machines may also be divided into several clqsss,
according: to the way the messages are transfered between

processors. One first technique is packet switching, where each ~

packet is routed according to a specific address. This technique is
fmquentlyf coupled with a multi-stages communication network,
where messages are passed through several nodes of the network
before reaching their destination. Circuit switching makes”
possible for several, arbitrary length messages to be transmitted
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with only one routing. When this technique is coupled with a one
stage network, the message can be transmitted in the minimum of
delays, except the initial configuration time. In order to reduce
the number of links and make possible any confi guration of the
network, an efficient way of achieving a one-stage circuit
switching is through the use of a crossbar network, which is a
mesh connected network with a controllable connection at each
intersection. Such a network implements a reconfigurable
architecture.

In the reconfigurable machines which we study, any
topology of the network may be implemented. Though the
change of the state of one intersection of the crossbar may be

very fast, the partial or global reconfiguration usually implies
some non-conflicting and possibly fault-tolerant routing.
Therefore the duration of a reconfiguration is not neglictible, and
may take one millisecond or more. Reconfigurations imply the
use of synchronisation points, which may occur at some SI€ps of
a parallel algorithm (semi-dynamic reconfiguration). The use of
single stage, circuit switching circuits, combined with the
hardware facilities for message passing of some processors such
as the transputers [Inmos 1988], may offer important progress
possibilities. However dedicated parallel methods should be
designed to make the best use of these architectures. This type of
machine is represented by the SuperNode machine designed
during the Esprit project P1085 [Harp 1987, Whitby-Strevens
1988}, and by the SuperCluster from Parsytec {Kiibler 1988].
The SuperNode machine is also characterized by a control bus
for synchronization purposes.

The processors used in these machines are transputers
with high throughput links making possible a fast message
passing (presently 4 links with a bidirectional throughput of 24
Mbits / sec on each link). Due to the limited size of present
crossbars, several crossbar levels are neceded in order to connect
a large number of these processors (up to one thousand). On
these machines, a set of processors connected by a single level of
crossbar is called a cluster. Our study has been specially directed
towards the SuperNode machine. In this machine, a cluster
(called T-Node), groups 16 transputers connected by a first level
crossbar. This crossbar is made of two switches, each having 72
* 72 links.The crossbar is controlled by two more transputers,
one of which is also the master of the control bus connecting all
wransputers of the T-Node. The béckplanc of a T-Node offers 7
slots, 2 of them being usable for two Rapid boards, without any
change in the organization of the host machine.

Two main difficulties of the use of SuperNode for high
performance database operations result from the duration of the
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reconfigurations, and from the multilevel organization of the
machine. In this machine, the frequency of reconfigurations has
a similar impact on the available communication bandwidth as the
number of messages in other architectures. Though the use of
relatively frequent and semi-dynamic reconfigurations increases
the interest of the architecture, the duration of the reconfiguration
steps must be limited in order to make the maximum use of the
communication throughpet. This limitation may partly be
reduced by changes in the reconfiguration methods, but also by
an improvement of the me:nads used by the applications or the
system. Another himitanen results from the multlevel
organization of the crossbar network, as the average througput
between two processors belonging to different clusters is smaller
than the throughput inside a cluster. This characteristic is
common with other hierarchical architectures, based e.g. on
busses, but is more limiting when the number of processors may
be very large. These two considerations have motivated our
choice of a specific execution model for an optimized utilization
of Rapid on the SuperNode.

The parallel execution model.
Principles

Our model executes transactions in parallel. A ransaction
is composed of a sequence of retrieval and update queries, each
of which being partially ordered within a tree. Some operations
of a transaction may therefore be executed simultaneously
(intra-transaction parallelism). An operation is activatad when its
source relations already exist (permanent relations). o have been
completely produced by another operation or a step of a recursive
operation (temporary relatons). Such an operation vn'lltbe said to
be "ready" to execution. This MIMD (Multipie Ipstruction
Multiple Data) approach is a dataflow one [Boral & Dewitt 1980,
Gajski & al. 1982]. |

These operations are generally done on the processors in
whose local memory the data are stored. We try to limit as much
as possible the interprocessors transfers. Using multiple copies
of relations placed on independent criteria as in Bubba is one
way for this [Copeland 1988]. Another copy of each relation or
more may also be placed on a complementary criterium to ensure
the availability of the relation in case of a breakdown of one node
[Cheiney & al. 1986]. An operation is divided into local
operations which execute in parallel, each on one of the

processors where the reievant copy of the source relations are
distributed. Each local operation is also divided into
I
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sub-operations in order to manage the pseudo-parallelism
between transactions, without commuting Pprocesses
(multithreading function of the Rapid software layer). We
assumne that when a join operation is done on two relations, there
is at least one copy of each source relation which is placed on a
common set of processors according a hashing function of the
join attribute. In some cases this condition is not satisfied and
data transfers must occur. The execution of an operation is thus
executed in an SIMD (Single Instruction Multiple Data) mode,
each local operation being done on a different processor. Due to
the specificities of Rapid and of the interconnection network, we
avoid to execute two local operations in parallel on the same
processor in different processes.

Data transfer on the interconnection network is done
most of the time between two groups of processors. The cost of
these transfers must include that of the communication itself,
which is linear to the number of tuples, and an overhead
corresponding to the reconfigurations. This overhead is
independent from the number of transmitted tupleé, but grows
with the number of communicating processors (sce examplé in
figure 3). Therefore, depending on its size, a relation may have
to be placed on a fraction of the total number of processors of a
cluster, in order to limit the reconfiguration duration. We shall
use the name "partition” for the group of processors where a
given copy of a relation is distributed. The size of a partition is
chosen at placement time. It depends upon the average

characteristics of the operations which use it. This size will be
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discussed later. As our partitions have variable sizes, it is
necessary to use the processors which do not belong to the
partition of a current operation, for others simultaneous
operations. This is a main justification for the utilisation of a
mixed MIMD / SIMD execution model, which would not be as
necessary if all relations would be partitioned on a cluster.

Logical addresses and concurrency control management.

Our execution model directly supports the notion of an
object identifier [Abiteboul & Kanellakis 1989], as does Rapid's
hardware. Each object is localized by a logical identifier,
sometimes called "surrogate”, which is a special kind of logical
address which does not vary when the object value is modified.
An identifier may be implemented as a logical address of a
second level logical address, which is only invariant between
two modifications of the object. When an object value is
modified, its page number may be changed in the second level
logical address (due to space or placement considerations), but
this second level logical address may me modified in place.
Therefore the identifier never changes. Another aspect of
identifiers is that they use logical addresses adapted to databases,

‘which have a structure "<page number><object numnber>", and
‘not "<page number><offset>" as in classical virtual memory

management. This results from the necessity of compacting the

) pages without chgngix{g the :logical addresses. A consequence of h
_ this structure is that classical MMUs (mémory management

units) cannot be used with the same efficiency in this

~ environment as in others, however we shall not deal with this
_problem in the paper.

In Rapid software machine the logical identifier can be
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LBT: Logical Bucket Table
LPT: Logical Page Table
LOBJT: Logical Object Table
OBJCPT: Object Copies Table
LOCKST: Locks Table

PBT: Physical

Buckets Table

PPT: Physical Page Table
POT: Physical Objects Table

decomposed into a segment number, a logical bucket number, a
logical page number, a logical object number and a copy number
(and in some cases, & version number). A lock may be associated
at the object level to each logical object number. The result of the
logical identifier translation is a physical identifier. The decoding
is done through a hierarchy of tables [Klinkhamer 1969]. The
physical identifier is a classical database logical address,
equivalent to the <page number><object number> structure of
Ingres [Stonebraker & al. 1976]. In the case of Rapid it is
composed of a segfnent number, a physical bucket number, a
physical page number, a physical object number. The decoding
of both logical and physical identifiers is represented in figure 4.
Logical and physical bucket numbers are used to limut the size of
each table and to allow the placement of tables and data.

Logical tables and locks tables are placed on specific
processors according to the identifier value, while physical tables
are placed according to the object value on the same processors
as the corresponding data. There is usually no possibility of

placing all logical tables on the same processors as the
corresponding data, as logical identifiers are independent of the
object values, which are used for the placement of data. Logical
tables are placed on the value of the identifier, and not on the
value of the corresponding data. Therefore they are placed into
specific "decoding™ partitions, while data are placed on "data
partitions”. A main issue in the model is to limit the number of
messages between data and decoding partitions. A
complementary aspect is that decoding partitions use much less
memory than calculus partitions. In order to have a good
occupation ratio of memory, we are therefore led to place
calculus and decoding partitions on the same processors, but to
synchronize the use of a given calculus partition with that of the
corresponding decoding partition.

The proposed concurrency control method is the method
of "counter-locks" [Faudemay & al., 1988 b). This method is
related to the two-phase locking (2PL), but each object lock

makes possible the management of a nearly arbitrary number of




simultaneous transactions. The lock is accessed during the
process of decoding of the logical identifier, and therefore the
setting and unsetting of a lock is much faster than with the
classical hash-based methods. Therefore it becomes possible to
use object level locks even during set oriented queries (such as
relational queries), and not only for debit-credit transactions.
Using an object level locking method is very useful with main
memory oriented databases (for a survey, see e.g. [Eich 1989)),
where relevant data are often spread on many pages.

Use of several processes per processor or not

In a general solution, operations are started as soon as
their data are ready. The operation is divided into identical
processes which execute the operation code on a different
processor of the partition. Each processor is then loaded with
many processes corresponding 1o various operations and
transactions. The time-sharing between processes is done by
the operating system, which is frequently called. It has been
shown that the workload of the operating system has a great
impact on the performances of a multiprocessor system.

In order to reduce the load of the operating system, we
have much simplified the placement and allocadon of processes
on the machine. In the normal mode of operation (in absence of
a processor failure) only one process of each type is executed
on cach processor, except possibly from communication
processes. The distribution of the workload between
transactions is implemented within each process, by a
multithreading capacity which is added to Rapid software
functionalities. Operations are splitted into atomic
sub-operations, and each process sequentially executes
sub-operations from varied transactions. The allocation of
sub-operations to processes takes into account fairness
considerations. The problem is then to realize an efficient and
fair allocation of sub-operations. An operation or a
sub-operation is started only if all the processors of its partition
arc free. A priority mechanism guarantees that cach

. sub-operation is executed in finite time, and generally within

controllable duration limits, as the model is intended to allow
real-time processing in the future. The atomic execution of each
sub-operation guarantees that no loading of the coprocessor

will be cancelled by the loading of another operation, which

could produce performance problems. Our solution is more a
controlled approach of the MIMD model than a chaotic one.

Process Placement.

In our model, processes belong to one of 4 types: the
transaction management processes (TM) start the operations
and suboperations on the corresponding processors, the
calculus processes (CP) execute the operations, the decoding
processes (DP) translate logical into physical identifiers and
check and update the locks, the coprocessor communication
processes (CC) exchange messages between the coprocessor
and the calculus processors. Executing in parallel one process
of each 1vpe on each processor would be possibie. but does not
seem desirable. If a message is sent to a processor which does
not currently executes the corresponding process, the sender
will wait or a context switching will have to occur. We have
chosen to execute one type of process on each processor during
relatively long time slices controlled by the TM. One processor
per cluster is dedicated to the transaction management (TM).
Other processors are dedicated to decoding partitions or to the
operations. The coprocessor communication processes (CP) are
placed on the transputers which manage the Rapid boards.
These boards are placed on the two free slots of the T-Node. In
order to maximize the workload of each processor, the
processors dedicated to the calculus may be more or less
numerous than those dedicated to the decoding. In order to
make the transaction management reliable, the TM process may
be transfered 1o another processor in case of a failure of its
normal processor. Auxiliary processes, which we have not
dealt with here, manage the transactions at a multi-cluster level
or manage the communication with groups of users.

Partitions sizes of relations.

~ The power of the Rapid coprocessor makes possible
the managermnt of tuples at approximately the same speed as
the tuples transfer. When considering the duration of each of
these operations, the volume of data transfered for a 8000 *
8000 tuples join on a 32 bits attribute may be estimated as
follows:

~ * oids decoding: 16000 words

* transfers to the coprocessor: 8000 words

- - *ransfers from the coprocessor: 16000 words
whijch represents about 160 k bytes. If each processor is
connected to another one through its 4 links, its maximum °
communication throughput is 96 Mbits / se¢ (96 Mbytes / sec
for 8 calculus processors) and the duration of the transfer is
less than 2 milliseconds. The minimum duration of the
operation on Rapid boards is presently 1 millisecond for 2000




source tuples on one board, and is linear vs the number of
wples. These evaluations do not include the calculus time spent
by the transputers for the communications and for the operation
preparation, which may change these figures. If we consider
the Mips ratio between a transputer and a 68020, the operation
preparation should take about 3 milliseconds on each
transputer. We have not yet estimated the cpu time spent by the
ransputers during the communications. which is not
neglictible. However the Mips ratio only gives a raw indication.
and a precise evaluation of these parameters will need the
implementation of a more accurate evaluation medel, which we
intend to build in a second step.

Therefore the duration of each step of the above
operation (8000 * 8000 tuples join returning 8000 tuples) is as
follows:

* operation preparation 3 ms / caiculus processor
* communications 2 ms / calculus processor

* total duration Sms
in parallel with the two previous steps:

* operation duration on each Rapid board: 4 ms / board
therefore the steps executed by Rapid can be done in parallel with
the calculation and communications steps, and the average
duration of a join on a T-Node should be about 0.3
microseconds per source tuple. This is rather good if we
consider that the operations are done in a virtual memory
environment, though most data are assumed to remain in
memory, and that the methods are compatible with object levels
locking.

In this evaluation, we consider that communications
always occur between the same pairs of processors, which is not
the case. The communication part of an operation is composed of
a sequence of transfers, separated by links reconfigurations. A
main issue is the minimization of the ratio of reconfigurations in
the total duration of operations. This ratio mainly depends upon
the distribution of relations among processors, and upon the
number of calculus and decoding processors which communicate
during an operation. A critical parameter is the size of the
calculus partition, for a given size of a source relation.,

This partition size is determined by an estimation of the
size of the source relations of the operation, according to the
permanent relations sizes and the average sclectivity of the
previous operations. If a relation is placed on a partition in order
to optimize some join, its distribution is chosen as a function of
the average number of source tuples of this join, weighted by the
frequency of the operation instances. The validity of using this

average number is one of the issues of the simulation, and other
distribution characteristics might also be found useful.

As there are in most cases several parttions of each size ,
we must then chose a partition for the given relation copy. A first
criterium is that there must be a copy of the relation on each
partition where there is another relation, which possesses some
foreign key belonging to the considered relation. Another
criterium is to reach an equilibrium of the workload of all
processors. during the execution of average sets of queries.
Therefore the distribution of relations among partitions may be
decided as a function of the frequency of access to each relation,
or the average frequency per byte of memory {Copeland 1988].
The combination of these criteria with the choice of partition
sizes within a limited set of partition sizes has not yet been fully
studied. As a whole, the problem of the mutual placement of
relations in the target machine will be the subject of further
studies.

Another aspect of the problem is the distribution of
partitions among processors. The constraints of our execution
model imply that a processor may not be occupied by two
operations in the same time. If two sub-operations executed in
the same time have one processor in common, one of these
operations will delay the other, due to the SIMD aspects of the
operation execution. This phenomenon will increase the ratio of
time during which processors are idle, and decrease the global
occupation rate of the processors. In order to limit the ressource
conflicts between operations, relations are placed on partitions
which do not share processors. We define a hierarchical
organization of the partitions, where each partition may be
included in only one partition of the immediate superior size, and
partitions of the same size have no processor in common.

Reservation method. ‘

Our model uses a mixed approach, which ¢ombines
medium grain SIMD and coarse grain MIMD. Several operations
may be executed simultancously by the machine on disjoint
partitions of the processor. An operation is activated only if all
processors of its partition arc free. We want to define a
mechanism for the allocation of operations to free partitions,
during the time needed by the operation. The reservation may be
done immediately or for a future time interval. This mechanism
relies on the fact that the duration of operations using Rapid is
efficiently predictible. This property may also be uscd in the
future to define a real-time parallel database system u§ing Rapid
[Stankovic 1988]. The idea of allocating time intervals on
partitions to operations makes the reservation method very




comparable to memory allocation problems, though some
complementary mechanisms must guarantee that the partition is
effectively free before the operation starts.

Several criteria must be satisfied by the reservation
method:

(a) minima! fragmentation. We want to limit the time
fragmentation of free processors in order to allow large
operations 1o be allocated 10 these processors in finite time. The
smaller the partition of an operation will be, the easier this
operation will have the possibility to access it and to fragment the
free time intervals of the larger partitions which contain it

(b) fairness of access of different transactions: no transaction
should reserve a partition for more than a certain amount of time,
or benefit from more than a certain occupation ratio of this
partition considered for a sufficient time duration, except if it has
some further defined priority level.

(c) waiting operations must be efficiently restarted when a free
partition becomes available.

In order to satisfy these three criteria, we have defined an
allocation method of processors which is based on an anticipated
reservation of partitions. In a first step, we present a general
allocation method which is independent from the data structures
used to store the operations. Then we shall define a more
efficient method. In the general method, the reservation queries
generated by the ready operations are stored in waiting queues
associated to each active transaction, in order to be able to give
the priority to each transaction using some round-robin method.
For each reservation query, we try to find in the future a period
of duration dt during which the processors of the needed
partition part are free. We use two levels of priority. One
corresponds to an imperative priority, for an operation which is
allocated in the first available interval, whatever the situation of
the other operations. The other level is simple priority, which
determines the order in which the operations are allocated if some
other conditions are satisfied. Each level of priority is
represented by a token, which is held by one of the transactions.
The types of priority which we use may also be helpful in the
future to manage real-time database systems [Lee 1989], though
this is not the case in the present version of the model.

The allocation is done with an imperative priority for the
first operation of the transaction which has the imperative token.
Presently, this first operation may be dcfmed by classical query
optimizers. For this operation, we allocate the first relevant ime
interval of the corresponding partition. The end of this time
interval becomes the "limit-date” of what we shall call the "near”
future for this partition (and in the present version, for the whole

cluster). If this limit is too near, a further limit may be defined,
according to a "minimum distance of the near future” (figure 6).

We then try to make the best possible occupation of the
processors until this time limit. We try to allocate other
operations (belonging to the same or the other transactions). In
order to limit the cost of this allocation and satisfy the priority
conditions, the availability period for these operations is secked
only in a "near” future. which is at most the “limit-date”. The
allocation query is satisfied if the partition is free during this
period. If it is not the case, the allocation query is kept waiting
again. In order to satisfy the priority conditions and the possible
operations deadlines, we first try to allocate the first operation of
each transaction, then we try to allocate the following operations,
by passing the second level priority token.

When the "limit-date” of the near future becomes near
enough from present time, we start a new imperative allocation
of the first operation of the transaction having the first priority
token. In a future version, imperative allocations could also be
started by deadline considerations, thus decreasing the
occupation ratio of the processors in order to satisfy real-time
constraints. After this imperative allocation, the second level
priority token can be either reset and given to the next following
transaction, or kept in its current place.

The time reservation parameters are then:

* ddec, the interval before the limit-date which starts the
exploration of the further future

* dlim, which represents the minimum duration of the near
future.

A simplified version of the algorithm is given in figure 5.

This general solution has an inconvenient which is a non
neglictible cost of the seek for free partitions in the future. In
many cases, the waiting queues of allocation queries may not be
all examined during the time explorations. It is therefore
desirable to found a solution which makes possible to examine
all the waiting allocation queries. For this reason, we propose
another reservation method. In this version, we no longer seek
for free partitions for waiting operations, but we directly seek for o
waiting operations which can occupy free partitions. In order to
have a direct access to the description of the waiting operations, o

dxcopcmnonsofapmnmmstoredaccordmgwthcupamuon i

number and their duration. Several classes of duration are
defined, and the retricval mechanism is much similar to that of
the retrieval of holes in the process of memory allocation.




while TRUE
do begin

/* reservation of the partition having the priority */ ) )
priority_date := seek( priority_op , interval [present_date,infinite( )
reservafion( priority_op , priority_date )

/* new "distant" future and new “near” future ¥/ o )
limit date := max( present_date+dlimit , priority_date+priority_op.duration )

starting_date

:= limit_date - ostarting_delay

/* we try to reserve the new near future for other waiting operations */
priority_op := current_op := next_op( priority_op )

while present_date < starting_date

/* We look for the partition corresponding to the current operation */

current_op_start_date :=

seek( current_op, interval [ present_datelimit_date ] )

if current_op_start_date #0

then ~ reservation( current_op ,current_op_start_date )

endif
/* we begin the next operation */

if current_op_start_date # 0 and priority_op == current_op

then  priority_op
glse current_op
endif
end
end

:= current_op :=next_op( current_op)
:= next_op( current_op )

seek( Op, interval [ starting_date , ending_date ] )
retrieves a period equal to that asked for by Op

reservation( op , date )
reserves the partition asked by Op

next_op (Op)

returns the operation following Op in the relevant priority order.

figure 5. reservation method.

We use this mechanism for the allocation of operations
having the second level priority token. The mechanism for
imperative allocation is nearly unchanged. When a partition is
free for some duration, we first examine if an imperative
allocation is nearly needed. In that case we first examine if the
corresponding operation may fit in this time interval. Otherwise
we successively look for a possible operation to execute in this
partition, in each duration class starting from the nearest smaller
class. In this class we allocate the first operation of the waiting
queue, which corresponds to the operation having the higher
priority (usually, the older operation). In general, this allocation
does not occupy the whole time interval, and we then try to
occupy the rest of the time interval with operations needing
smaller intervals, or smaller partitions included in the considered
partition. The priority mechanisms seem therefore different from
those of the general version, and we intend to examine in further

papers the effect of these two mechanisms on the fairness and
possible time constraints of the operations. In this version, the
reservation cost, which is a parameter of the simulation presented
in the following paragraph, may in general be neglected.

Simulation method.

With this simulation, we try to know what is the
processors occupation ratio which may be obtained by the time
reservation method. Our purpose is to maximize the reservation
and occupation ratio. The reservation ratio is the ratio between
the total reserved time of the processors and the total duration of
the experiment on all processors. The occupation ratio is the ratio
of the time really used by operations (excluding the
reconfiguration time), vs the total cpu time. As the fairness of the
method seems guaranteed by the algorithm, we do not study it in
this first series of experiments. Therefore it is not necessary to
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figure 6. Data structures for the direct placement of operations

consider the workload at the transaction level. We only consider
series of operations placed on several partitions, without
mapping them on transactions.

The main characteristics of an operation are its duration,
its partition, and its arrival time. The duration of an operation is
calculated using the size of the corresponding permanent
relations, and the selectivity of the previous selection operations.
We limit ourselves to consider queries of the “selections-join™
type, or equivalent more complex queries. In order to have a
simple enough simulation, we consider only two distribution
laws. the distribution law of the sizes of permanent relations and
the distribution law of the total selectivity of the previous
operations. These two laws must respect the hypotheses on the
data placement, and the equilibrium of the processors workload.
As the duration of an operation is considered to be linear in the
number of source tuples (which is approximately true with
Rapid), we only consider one source relation per operation, and
only one type of operation, which corresponds e.g. to a join.
The operation calculus is considered to be composed of a
decoding step followed by a calculus step. The transfer

operations, which are supposed to be done in parallel, are .

neglected and will be the subject of further simulations.

For each operation the partition size has to minimize the
reconfiguration ratio. The best partition size for a copy of a
permanent relation is then a function of the size of the source
relations of the operations using this relation. The distribution of
the permanent relations is chosen according to four size classes
of permanent relations, each one corresponding to a partition size
in case of a selectivity equal to 1. The simulations have been

done with various values of this distribution. which will be
displayed in the next paragraph. The selectivity of the previous
operations is defined by the average value of this selectivity.
Three classes of selectivity have been defined, corresponding to
average selectivities 0.5, 0.05 and 0.005. In our present
simulation, each of this classes has the same probability (1/3). In
the simulation, each operation has a previous operations
selectivity, which is taken in one of these 3 classes with
probability 1/3, and varies around the class average s* with a
uniform distribution in the interval [s*.(1-a), s*.(1+a)]. When
chosing a = 1, the distribution is uniform in the interval (0,
200%). Therefore each class has a non-empty intersection with
the others. The existence of a large range of operation sizes in
each partition is needed for the significance of the simulation.
The partition number is chosen randomly in each partition class,
characterized by its number of processors.

The operations are generated with a creation time which
follows an uniform law, with a given creation rate. The creation
rate is tuned in such a way that there is no long term increase of
the waiting queues, i.c. the creation rate is just under the
saturation level of the machine. It thus seems useless to consider

complex waiting queues modelisations ., and more complex

creation laws, such as Poisson laws. The size of the waiting
queue is given for various simulations in the next paragraph, and
shows that the parameters do not lead to a saturation of the
machine (figure 7).

] The size of the operation partition, and that of the source
re@ation, enable us to calculate the duration of the operation,
inécluding the reconfigurations duration. Due to the variability of
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type 3, I4 = 0.25)

the selectivities, some operations would have a reconfiguration
ratio which is above 20%, which we have chosen as the
desirable limit of the reconfiguration ratio. In this case we group
the operation with other ones, which use the same configuration
but not the same source relations, in order to avoid concurrency
control problems. We have not yet evaluated if operations
groupings may be limited in some cases by this condition. If we
would have to drop the groupings in some cases, it is clear that
the occupation ratios would not be as good as in our first results.

Simulation results.

The simulation results are presented as a function of the
size distribution of the permanent relations, which belong to four
classes: small relations (I1), medium size relations (12), large
relations (14), and very large relations (18). We do not intend to
make assumptions about which relations sizes are probable in
real applications, but we only distribute relations sizes according
to the corresponding partition size. With an average operation
selectivity of 1, relations of class 11 are distributed on only one
processor, while relations of class I8 are distributed on 8
processors. We assume that 8 processors is the maximum size of
a calculus partition in the present organization of the machine.
Relations sizes in each class could be much increased if we
assumed a higher selectivity of current operations (and specially
selections), which means a selectivity much smaller than 1.
Simulations are divided into 3 groups. In the first one (type 1),
the total number of tuples of small relations is 0.375 of the total,
in the second one (type 2), it is 0.200, in the third one (type 3) it
is 0.100. The total ratio of the number of relations belonging to
the very large relations class (I8), is always 0.011. The ratio of
the 4 class vs the total number of relations is S. The ratio of the
class I2 corresponds to the remaining tuples. In each group of
simulations we have presented the results as a function of S.
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The first series of figures (figure 8) displays the total cpu
time for each operation class. Each operation class is
characterized by the number of processors of their partition. As
an example, part 4 operations use 4 processors. The cpu time is
cumulated for a given class and the smaller ones, therefore
returning the cumulated value for class <1, where i is the number
of a class. The total cpu time for a single class is thus the
distance berween two of the curves. In type 1 simulations, the
ratio of part < 8 grows naturally as this part increases. In type 2
and 3, we can observe another phenomenon. The ratio of
operations belonging to class 4 first decreases, then increases
again. This results from the fact that the partition size of an
operation does not only depends from the size of the
corresponding permanent relations, but also from the selectivity
of previous operations. Part of the operations using data derived
of 18 type of permanent relations are executed in partitions of 2
or less processors. Therefore the ratio of the operations done on
these partitions increases in a first time. An analytical
presentation of this phenomenon should be given lajter.

The next figures (figure 9) display the operation
throughput at saturation level and the size of the wjaiting queues
according to the same parameters. As the ratio of ljarge relations
increases, the average size of operations also increases and the
saturation throughput decreases in terms of numbers of
operations. This result is rather straightforwardl In the same
conditions, the size of the waiting queue tends to 1ncrease This
seems to be due to the fact that with larger operations, the
placement of small operations tends to become thorc difficult,
and a larger waiting queue is necessary in order to?obtain a good
placement of these operations. The waiting queue increases as
long as a significant ratio of the operations cannot be placed fast.

The last series of figures (figure 10)% displays the




evolution of the reservation ratio and occupation ratio when the
ratio of the large relations increases. Though the placement of the
small operations becomes more difficult until the waiting queue
is large enough, large operations make a good use of the largest
partitions, which returns a higher reservation and occupation
rauo. This seems to demonstrate that our reservation method
enables large operations to be placed with a good respect of their
priorities, thus guaranteeing the efficiency of the placement. The
occupation ratio, which is the main result when considering the
extimated vield of the machine, is always larger than 0.76, and
may reach more than 0.82. This results from the good
reservauon ratios, and from the fact that we group operations
when the reconfiguration ratio grows above 20%. Possible
difficulties for this grouping may arise from concurrency
problems, and this issue will be addressed in further studies. As
a whole, the simulation results seem to indicate that the proposed
execution model is worth being studied.

figure 8. total cpu time per operation
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Conclusion

In this paper we have presented a mixed MIMD / SIMD
parallel execution model, which is characterized by a non-chaotic
operation of the model. Context switches are limited as much as
possible, and the ratio of reconfigurations to the total calculus
time is also limited. Simulations show that a very good
occupation ratio of the host processors seems possible. The
model seems to be well adapted to the use of the Rapid
associative coprooessor and to reconfigurable host machines. It
appears as an alternative to models based on a very high number
of communicating processes, without much synchronization
between them. Though the transputers are in principle adapted to
an environment of communicating processes, a more organized
communication might improve their use. Apart from improving
the execution model, hardware and software solutions reducing
the reconfiguration durations might also be useful to improve the
performances pf reconfigurable machines.

In this paper, we have studied the main lines of the
model. Several problems have been left open, such as the impact

of concurrency control on the compatibility between various
operations, the problems of commuting calculus and decoding
processes on the same partitions, the effect of inter-clusters
operations, or that of operations where data need to be
transmitted between processors. These problems need to be
studied with a more accurate simulation model, or possibly with
a simplified prototype of the software machine. We intend to use
these first results as a basis for the implementation of this
prototype. which will make possible the use of Rapid on shared
nothing multiprocessors. This prospect represents a promising
solution, as multiprocessors are rapidly developing and new
applications seem to be more realistic in that context. Other
works are also currently done on the embedding of Rapid in
shared-memory multiprocessors.
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