
On-Demand Component Deployment
in the UPnP Device Architecture

Didier Donsez

Laboratoire LSR, Equipe ADELE
Université Joseph Fourier

BP 53, F38041 Grenoble Cedex 9,
didier.donsez@ieee.org

Abstract— The standardization of networking home appliances
fosters home automation joining the mass market. Controlling
the appliances requires several either specialized or generic
controls. This paper is interested in the dynamic trading and
deployment of software components implementing UPnP control
points. It also addresses the bridge between UPnP and the world
of micro-appliances. An OSGi-based prototype validates our
proposition. (Abstract)

Keywords: Home networked appliances; UPnP DA; Control
point; Trading; Deployment; Component Model.

I. INTRODUCTION
The home automation is finally becoming a reality for the

mass market. Until now, the market was scattered into a large
number of appliance manufacturers promoting incompatible
and proprietary control protocols, making it difficult for the
market to progress. One of the main reasons was that until now,
it was very difficult for the integrator (architect, installer...) to
provide a completely integrated solution covering all the types
of appliances (HVAC, shutters, burglar and fire alarm, patient’
healthcare monitors, etc) to their customer. The beginning of
more widespread opened norms and standards as X10 and the
generalization of domestic IP wire and wireless connections
has brought about a new era of home automation [1] and build
automation [2]. Indeed, some device discovery technologies [3]
such as mDNS, UPnP, DPWS, IGRS and EchoNet, and home
middlewares [4] allow the dynamic addition and withdrawal of
device in the home network without the necessity of user
interaction (ie. zero-configuration, zero-administration).

Universal Plug and Play (UPnP) Forum [5,6] is an open
industrial consortium formed in 1999 for the definition of
standards simplifying the network set up of communicating
devices (i.e. appliances) in homes and companies (SOHO:
Small Office Home Office). UPnP Forum published a first
version of the required standards for networks and several
standard definitions of devices and services associated with
these devices. UPnP is a distributed platform with dynamic
services for devices (TV sets, DVD players, light control,
HVAC, security cameras, etc) and control points (PDA, TV
sets, touch panels, etc) connected through an adhoc wired or
wireless IP network (figure 1).

UPnP defines the required network standards that enable
the live detection (and withdrawal) of devices, the use of
provided services through the control points and keeps the user
informed of changes in the current state associated with the
services. In this platform, some devices actually serve as
gateways between “micro-worlds” of “micro-devices” using
other open or proprietary protocols than IP (X10, LonWorks,
Konnex/EIB, BACNet IEEE 1394 …) and UPnP control
points. The platform can integrate low-cost devices into the
UPnP network, which cannot carry an IP stack.

IEEE1394

UPnP DA

Gateway
FireWire-UPnP

Media
Center IGD

Gateway
X10-UPnP

Gateway
X10-UPnP

Web

Figure 1. Example of a UPnP device network

The UPnP control points are either remote control
specialized for a given manufacturer or a given model of
devices, or overall devices with GUI (phones, PDAs, display
panels or TVs) more or less refine. In this second case, the
overall control points program must have the control interface
components of all devices connected in the residence. It also
must contain the interfaces of future devices, which maybe
added. There are over a hundred different variations of these
control interface components due to the wide range of goods
produced by manufacturers. Moreover, this task is complicated
by the coexistence of several GUI design frameworks. For
example, a Java developer has the choice between several
alternative frameworks, which can be used to build an GUI (ie
AWT, Swing and SWT for the workstations, eSWT for the
PDAs, MIDlet for the mobile phones and HAVi and JavaTV
for the TVs, etc)

Similarly, the micro-world gateway software must also
include the conversion components enabling the translation of
UPnP actions into network commands used by the micro-
devices. Gateways must therefore take into account the
addition of any new devices through the update of its firmware,
which requires frequently a gateway reboot.

1-4244-0667-6/07/$25.00 ©2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE CCNC 2007 proceedings.

For the moment, the dynamic updating of control point
programs and micro-world gateways has been addressed by
neither current products nor literature.

In this article, we suggest a brokerage and an “on-demand”
deployment framework of software components for the control
points which we call controllet, and components for gateways,
which we call bridglet. This framework is based on the Service
Oriented Architecture paradigm (SOA) [7,8]. SOA allow
building applications in which any service implementation can
be substitute with another one as long as the latter respects the
contract of the service.

The rest of the article is organized in the following way: it
starts with an introduction of the two types of components
controllet and bridglet, which are associated the UPnP devices.
Section 3 introduces the brokerage, deployment and
composition principle of these components. Section 4
introduces a prototype of this framework build over the OSGi
services dynamic platform [9,10]. Section 5 will show the
framework in relation to related works. Finally, this article
concludes with several perspectives.

II. UPNP DEVICE MODEL
Any UPnP device embeds its own description and can

provide it for requesting control points. The description follows
a hierarchical model composed of (sub-) devices and services
(figure 2).

The description (which is expressed in an XML grammar)
includes a list of provided services and eventually a list of other
embedded (sub-)devices. For example, a video recorder is both
a media source (called Media Server) and a media recorder
(called Media Renderer). The device description also contains a
type identifier (standard or proprietary), the manufacturer, the
model and serial number. A standard type refers to a
standardized device profiles according to the UPnP Forum.

Each service had also a type. It includes states variables and
actions. A variable can be, for example, the volume level of a
TV set and an action can be to increase this level, another to
lower it and a last to enter or exit the mute mode. Some
variables can notify the change of value to control points which
subscribe for those changes. This notification makes it possible
to use context-aware control points [11,12].

*

0..1

parent

child

Parameter

*
direction : in, out

Action
*

name

invoke

StateVariable
*

type
sendEvent

Service*

id
type

Device
id,type

manufacturer,model
icons

{ordered}

*

0..1

parent

child

*

0..1

parent

child

Parameter

*
direction : in, out

Action
*

name

invoke

StateVariable
*

type
sendEvent

Service*

id
type

Device
id,type

manufacturer,model
icons

Device
id,type

manufacturer,model
icons

{ordered}

Figure 2. UPnP Device Model

The UPnP Forum standardizes and publishes descriptions
of standardized profiles for devices and services (named
Device Control Protocol (DCP)). These descriptions can
incorporate some mandatory elements and some others
optional. For example, a video surveillance camera could not
provided zooming and focusing functions. Moreover,
manufacturer can extend a device standard definition by adding
proprietary extensions such as the night vision mode and
rotating motion for a security camera.

A candidate to the next generation of UPnP is DPWS
(Device Profile for Web Services) [13]. It relies on standard
WS-* protocols and it is already implemented by MicroSoft
and provided in Windows Vista.

III. CONTROLLETS AND BRIDGLETS
In this article, we propose an “on-demand” deployment

framework of software components for the control points, the
controllets, and components for gateways, the bridglets (figure
3). This framework can trade components according to the
UPnP device hierarchical model.

ControlletControllet

Generic control point UPnP AV
Media

Renderer
Bridglet

for
Dimmable

Light

Bridglet
for

Dimmable
Light

ControlletControllet

micro-world
gateway

SW Component repositories of
Equipment Manufacturers

FrameworkFramework FrameworkFramework

Trading and Deployment

UPnP
Network

WWW

upnp device
upnp control point

model
manufacturer
type
…

model
manufacturer

type
…

Micro-
World

Figure 3. Deployment of Bridglets and Controllets

A controllet is a component for controlling a device or a
service. It gives the user a graphical interface in order to show
the device or service current state. It is linked to the controlled
service variables in order to make the GUI reactive to the value
changes. For example, the stop/start button in figure 4 only
switches when the state change is notified. A controllet can log
the actions carried out by the user as well as the last known
values of the state variables. The controllet can then continue to
post the supposed state of a device temporarily disconnected
from the point of control (i.e. transitory loss of the WiFi
network...).

Bridglets are components that carry out conversions of
operation and notification between “micro-worlds” devices and
the UPnP network. The brigdlet introduces all or a part of a
“micro-world” device such as an UPnP standardized or
proprietary device or service. In the example in figure 3, the
bridglet controlling the X10 light bulb exposes the standardized
UPnP device type called "Dimmable Light".

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE CCNC 2007 proceedings.

In this framework, the components, controllets and
bridglets, have the following properties:

- Modular: a component can process either a complete
device, either one of the embedded sub-device, or one of the
services of the device root or one of the sub-device. For
example, a service controllet (cf button ON/OFF in figures 4
and 5) can be used for all the start and stop operations of all
electric appliances. Therefore, it is reusable across several
device controllets (thumbnails 5 and 6 in figure 5).

- Composable: as in many hierarchical component models,
a component can itself be made up of other components, which
can be used for other sub-devices or services. The composition
of controllets (as well as bridglet) generally follows the
hierarchical structure of the UPnP devices. In figure 4, the TV
controllet is made up of a power controllet, a channel selection
controllet, and a volume adjustment controllet.

The sub-components can be statically setted at design time
or can be dynamically traded and setted at runtime according to
the SOA approach. In the case of the controllets, an order and a
priority can be also specified for the sub-components
displaying. The priority is used to display only the important
controllets when the GUI context limits the controllets
displaying or when the user desires a simplified interface. For
example, the TV controllet hides currently the color and
contrast adjustment controllet or the Dolby and 5.1 extensions
sound controllet.

- Polymorphic: the framework handles overall components
well-able to deal with a generic manner the largest number of
devices as well as specialized components which only deal
with a device of a particular model from a particular
manufacturer. Specialization in general takes advantage of
owned extensions of devices and services. For example, a
specialized controllet for the selection of 99 channels of a TV
set is represented by the 10 usual keys of an ordinary remote
control, while a generic controllet will represent this service
either by a text field to fill up or a 99-increments scrollbar.

- Substitutability and negotiable: In conformity with SOA
paradigms, several components can replace each other to take
the control of a device. However, the framework always looks
for the most specialized component first. For this, each
component is attached to a description listing the model and the
manufacturer of the controlling device, the type of the
controlled device and service as well as the supported
execution environment (especially if the component uses
C/C++ native libraries). The controllet description can be
completed by the culture (user language, etc) and its
environment description includes the required GUI framework.

IV. COMPONENT TRADING AND DEPLOYMENT
The framework uses the description attached to the

controllets and the bridglets in order to carry out the trading,
the composition and the deployment.

urn:schemas-upnp-org:service:SwitchPower:1
urn:schemas-adele-imag-fr:service:ChannelSelector:1
urn:schemas-adele-imag-fr:service:VolumeSelector:1

Figure 4. A composite controllet

A. Component Trading
For all new devices discovered in the UPnP network (as

well as in the “micro-world”), the framework launches an
trading operation to determine the most appropriate controllet
(as well as the bridglet) for the discovered device.

Among the list of the available components, the trading
algorithm eliminates firstly the components, which do not meet
the environment constraints, such as the graphical toolkit or the
architecture and operating system if the component has native
libraries. The algorithm then seeks in priority the components
the model and manufacturer attributes match with the device or
service type in the candidates list. If no component related to
the device model is found, the algorithm then seeks the
specialized components (i.e. without model and manufacturer
attributes) for the device or service type. Finally, if no
component related to the type is selected, the trading algorithm
returns the generic component by default. The generic
component for a device aggregates and displays the controllets
traded for its sub-devices and services. So the trading can
recursively done for the sub-components. The generic
component for a service lists the state variables and enables
subscriptions for their notifications. The generic controllet
displays a button and parameter fields for each action as most
generic control points available in development toolkits (Intel,
Siemens, Domoware, etc).

B. Component Composition
A component can itself be a composite, made up of sub-

components in order to allow modular developments. These
sub-components are related with sub-devices or device
services. However, it is possible to consider other compositions
related, for instance, to the versions of the service
specifications, to the proprietary extensions or to the features
available or disable across of product family. The sub-
components can be statically defined at design-time or can be
dynamically replaced at runtime according to the SOA
approach. In the second case, the component uses in its turn the
trader in order to seek the most appropriate sub-components.
This composition by trading is very similar with the concept of
component template introduced in the Fractal component
model [14] to define generic assemblies of components.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE CCNC 2007 proceedings.

C. Component Deployment Policies
The deployment operation can be carried out immediately

when the device is discovered or may be delayed until the user
starts to use the device. The first is known as immediate while
second is known as on-demand since the deployment is done
when the end-user demands to control the appliance.

The immediate policy has the major drawback of using the
resources (CPU and RAM) of the control point or of the
gateway even though the user never demands to use any of the
discovered devices. It could even be impracticable when the
number of different devices increases in the network. However,
it has the advantage of being able to notify the user of state
changes of the device (for instance, with tickers, blinking icons
or pop-up alerts) as of its discovery by the control point.

A first solution was to statically enrich the controllet
description with an attribute defining statically the policy that
has to be used for the component deployment. A second
solution is to design a controllet as a composition of 2 sub-
components deployed in two steps: one is responsible for
notifying changes to the user since the other for controlling the
actions on the device. The first sub-component is deployed
according to the immediate policy while the second
oneaccording to the delayed policy. However, this solution
does not simplify the controllet development and packaging
and the sharing of the device internal representation between
the 2 sub-components.

Finally, the deployment policy can be determined according
the history of the devices actions that could be saved in the user
context. The idea is if the user is used to a kind of device, then
it is highly probable than he will use them again.

V. PROTOTYPE
This framework was validated through the development of

a generic control point for PDAs and a “micro-world” gateway
for an OneWire bus.

The control point and the “micro-world” gateway are both
based on the OSGi framework [9]. The choice of OSGi for this
prototyping was justified not only by the fact that OSGi makes
it possible to conceive Java-based plugin applications, in which
the plugins can be deployed and redeployed without starting
the main application, but also by the fact that the OSGi
specification reifies the UPnP devices in the form of OSGi
services. Information needed to trading operations is gathered
in an index (following a XML grammar) extending the
deployment information used by the current deployment
services of Oscar and Felix, two well-known open-source
implementations of the OSGi specification. Our framework
delegate component installation to the deployment service on
the OSGi platform. This latter deploys the selected controllet or
bridglet as well as its dependences (i.e. other bundles providing
codes or services).

The PDA control point uses a lightweight graphic
environment (ie AWT) in order to be supported by most of the
JRE for PDAs. A main panel lists the icons of the UPnP device
discovered (cf. thumbnail 1 in figure 5). Once the icon is
selected by the user, the framework deploys the bundle (i.e. the
deployment unit of OSGi) chosen by the trading operation. The

bundle provides then a factory of objects implementing the
Controllet interface for each device of the same model or type.
The controllet for this control point implements the class
java.awt.Component as well as a life cycle interface allowing
the controllet iconification. It was tested on the HP iPAQ and
Dell Axim with Oscar and Felix using the JVMs J9 and
CReME for WinCE.

The “micro-world” gateway towards an OneWire bus
(http://www.ibutton.com) controls sensors (temperature,
hygrometry, etc) which can be connected and detected on the
bus. Several brigdlets were developed for various types of
OneWire sensors. The bridglet specialized for the temperature
periodically polls the sensor and notifies changes. In the case of
OneWire, the bridglet trading is carried out based on the model
or the type (encoded on 8 bits) of the OneWire sensor (for
example, 21 for Thermochron DS1921 and 23 for Hygrochron
DS1923).

Figure 5. Controllets deployed on our PDA based generic control point

VI. RELATED WORKS
This work is found at the intersection of research on the

software components [15], on the service-oriented dynamic
architecture [7,8], on the deployment of software components
[5] and on the context-aware and plastic GUIs [11,16]. This
section positions our work in relation to several other similar
developments or bringing solutions to the problems addressed.

Several research works and products were undertaken in the
field of the software deployment. Carzaniga et al. [17] presents
the field of software deployment and lists the main criteria for
comparison. In the world of the Java applications, Java Web
Start (JNLP), MIDP OTA, and OSGi (on which we have based
our prototype) are among the most advanced. Java Web Start
and MIDLet each only define the static dependencies to the
libraries and the environment (i.e. packages included in the
environment), which is not suited for the trading and dynamic

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE CCNC 2007 proceedings.

deployment of the controllets and bridglets. The OSGi
specification standardizes a service named Device Access, to
enable the driver refinement and deployment on device
detection. However, we think this service does not fit for the
hierarchical composition of controllets. OMG D&C [18]
specifies a very sophisticated component deployment
framework. However it does not address the on-demand
component trading at runtime. Some generic frameworks
propose to select and deploy the “right” components according
to contextual information [19] or quality of services constraints
(memory usage, etc) [20]. Our trading algorithm could be
refined by using such information about the environment.

The Gravity and Beanome projects [21] explore the GUI
creation equipped with autonomous capabilities of dynamic
adaptation based on components (graphic resources) available
in the system. Gravity and Beanome based their work on a
model with a component-oriented service, simplifying the task
of developers in dynamism management of the arrivals and
departures of components. Gravity and Beanome, however,
only use the already deployed components and do not address
dynamic trading. Comets (COntext of uses Mouldable
widgETs) [22] are graphic components adapting their plastics
according to the context and to the execution environment.
They maybe composed like the controllets. Trading and
deployment are not addressed by the Comets frameworks. So
the controllets could be used as deployment containers for the
comets.

VII. CONCLUSION.
This article presents a trading and on-demand deployment

framework of software components intended for control points,
controllets, and components intended for gateways, bridglets.
These components are dynamically deployed (installed and
activated) as soon as the device is discovered. These
components follow the hierarchical structure of the UPnP
devices and they may be made dynamically. A framework
prototype was carried out based on the OSGi services dynamic
platform. Examples of controllets and bridglets illustrating this
paper can be found at
http://www-adele.imag.fr/users/Didier.Donsez/dev/osgi.

Recently, MicroSoft had announced Vista Side Show which
enables to have generic control points to DPWS devices [13].
So, a short-term perspective is to apply our deployment
framework to the DPWS-enabled devices. Two other
perspectives are considered. The first one concerns physical
control devices such as phydgets [23]. The framework could be
used for the deployment of the phydgetlets, which could be
software components associated with the phydgets discovered
dynamically. The second one concerns the “choreographies of
devices” which compose the services provided by several
devices [24]. For instance, the shutter can be closed when the
user starts playing a DVD. The deployment of a given
choreography could be triggered when the devices required for
it appear in the network or sub-network.

REFERENCES
[1] D. Marples, S. Moyer, “Home Networking and Appliances”, in Diane

Cook, Sajal Das, Smart Environments: Technologies, Protocols and
Applications, Wiley (2004)

[2] D. Snoonian, “Smart Building”, IEEE Spectrum, August 2003
[3] M. W. M. Feng Zhu and L. M. Ni., “Service Discovery in Pervasive

Computing Environments,” IEEE Pervasive Computing, vol. 4, no. 4,
pp. 81–90, 2005.

[4] A. Dhir, “Home Networking Middleware”, Xilink whitepaper, WP136
(v1.0) March 2001, http://direct.xilinx.com/

[5] UPnP Forum, “Understanding UPnP™: A White Paper”, June 2000,
http://www.upnp.org/download/UPNP_UnderstandingUPNP.doc.

[6] M. Jeronimo, J. Weast, "UPnP Design by Example: A Software
Developer's Guide to Universal Plug and Play", Pub. Intel Press, ISBN:
0971786119, 2003.

[7] G. Bieber, J. Carpenter, Introduction to Service-Oriented Programming,
OpenWings whitepaper, 2001, http://www.openwings.org/

[8] H. Cervantes and R. S. Hall: "Chapter I: Service Oriented Concepts and
Technologies," in the "Service-Oriented Software System Engineering:
Challenges and Practices," (ISBN 1-59140-426-6) edited by Zoran
Stojanovic and Ajantha Dahanayake, Idea Group Publishing, 2005

[9] OSGi Alliance, http://www.osgi.org
[10] D. Marples, P. Kriens, “The Open Services Gateway Initiative, an

Introductory Overview”, IEEE Communications Magazine, Dec. 2001.
[11] A.K. Dey, G.D. Abowd, “Towards a Better Understanding of Context

and Context-Awareness” In the Workshop on The What, Who, Where,
When, and How of Context-Awareness, as part of the 2000 Conference
on Human Factors in Computing Systems (CHI 2000)

[12] S. Meyer, A. Rakotonirainy, “A survey of research on context-aware
homes”. Proc. of the Australasian information security workshop
conference on ACSW frontiers, 2003, pp 159–168.

[13] F. Jammes, A. Mensch, H. Smit, “Service-oriented device
communications using the devices profile for web services”, Proc. 3rd
international workshop on Middleware for pervasive and ad-hoc
computing, Grenoble, France, Nov. 2005

[14] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, J-B. Stefani, ”An
Open Component Model and Its Support in Java”, 7th International
Symposium on Component-Based Software Engineering (CBSE),
Edinburgh, UK, May 24-25, 2004, LNCS 3054 pp 7-22

[15] C. Szyperski, “Component Software: Beyond Object-Oriented
Programming”, Addison-Welsey, 1997.

[16] D. Thevenin, J. Coutaz, “Plasticity of User Interfaces: Framework and
Research Agenda”. Proc. Interact99, Edinburgh, Eds, IFIP IOS Press
Publ., 1999, 110–117

[17] A. Carzaniga, A. Fuggetta, R.S. Hall, A. Van Der Hoek, D. Heimbigner,
A.L. Wolf, “A Characterization Framework for Software Deployment
Technologies”. University of Colorado Tech. Rep CU-CS-857-98, 1998.

[18] Object Management Group, Deployment and Configuration Distributed
Applications Specification, http://www.omg.org/docs/ptc/04-08-02.pdf

[19] D. Ayed, C. Taconet, G. Bernard, “A Data Model for Context-aware
Deployment of Component-based Applications onto Distributed
Systems”. ECOOP '04 Workshop on Component-oriented Approaches to
Context-aware Computing, Oslo, Norway, June 14-19, 2004.

[20] J-C. Tournier, V. Olive, v Babau, “Qinna, an Component-Based QoS
Architecture”. 8th International Symposium on Component-Based
Software Engineering (CBSE), Saint-Louis, USA, June 2005

[21] H. Cervantes, R.S. Hall, “Automating Service Dependency Management
in a Service-Oriented Component Model”, 6th International Symposium
on Component-Based Software Engineering (CBSE), Portland, OR, 2003

[22] G. Calvary, J. Coutaz, O. Dâassi, L. Balme, A. Demeure, “Towards a
new generation of widgets for supporting software plasticity: the «
comet »”, EHCI-DSVIS'2004, Hamburg, Germany, LNCS 3425, 2004

[23] S. Greenberg, M. Boyle, “Customizable physical interfaces for
interacting with conventional applications”. Video Proceedings of the
ACM UIST 2002 15th Annual ACM Symposium on User Interface
Software and Technology. ACM Press.

[24] W. Trumler, F. Bagci, J. Petzold, T. Ungerer, “Smart Doorplates -
Toward an Autonomic Computing System”, 5th Intl WS on Active
Middleware Services, June 2003, Seattle, WA, USA pp 42-47.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE CCNC 2007 proceedings.

	Select a link below
	Return to Main Menu
	Return to Previous View

