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Abstract

We present a real-time algorithm for simultaneous localization and local magpirej
SLAM) with detection and tracking of moving objects (DATMO) in dynamic outden-
vironments from a moving vehicle equipped with a laser scanner, shayé raars and
odometry. To correct the vehicle odometry we introduce a new fast impletieentd in-
cremental scan matching method that can work reliably in dynamic outdoor emerds.
After obtaining a good vehicle localization, the map surrounding of the veisicpdated
incrementally and moving objects are detected without a priori knowledgesdfthets.
Detected moving objects are finally tracked by a Multiple Hypothesis Trabkei{ cou-
pled with an adaptive Interacting Multiple Model (IMM) filter. The experimémésults
on datasets collected from different scenarios such as: urban steatdry roads and
highways demonstrate the efficiency of the proposed algorithm.

Key words: occupancy grid, simultaneous localization and mapping, moving object
detection, multiple object tracking, interacting multiple model, laser radar datafus

1 INTRODUCTION

Perceiving or understanding the environment surroundimgvehicle is a very im-
portant step in driving assistant systems or autonomousleshThe task involves
both simultaneous localization and mapping (SLAM) and ctete and tracking of
moving objects (DATMO). While SLAM provides the vehicle wighmap of static
parts of the environment as well as its location in the mapl 2@ allows the ve-

hicle being aware of dynamic entities around, tracking tlard predicting their
future behaviors. It is believed that if we are able to acdishgoth SLAM and

DATMO reliably in real time, we can detect critical situateto warn the driver in
advance and this will certainly improve driving safety amelent traffic accidents.
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Fig. 1. Architecture of the perception system

In the literature, SLAM and DATMO have been attracted coesablle research
works [1] [2] [3] and they also are essential parts of the gpetion modules in

driverless cars [4] [5] participating in the recent serieEBARPA Grand Challenge
competitions [6]. However, for highly dynamic outdoor sagas like in crowded

urban streets, there still remains many open questionse€Tlinelude, how to rep-
resent the vehicle environment, how to obtain a precisditmtaf the vehicle in

presence of dynamic entities, and how to differentiate mgpwbjects and station-
ary objects as well as how to track moving objects reliablgrdime.

In this context, we designed and developed a generic pévoeptchitecture ad-
dressing these problems focusing on outdoor dynamic emviemts [7]. The ar-
chitecture (Fig. 1) is comprised of two main parts: the firsttpvhere the map of
vehicle environment is constructed and dynamic objectsdamtified; the second
part where detected moving objects are verified and tracked.

In the first part of the architecture, to model the environtreemrounding the ve-
hicle, we employ the occupancy grid framework proposed big<H8]. In order

to perform mapping or modeling the environment from a mowedicle, gen-

erally a precise vehicle localization is necessary. Toemivehicle locations from
odometry, we introduce a new fast laser-based incremexdalization method that
can work reliably in dynamic environments. When good vehictations are es-
timated, by integrating laser measurements we are ableilt d&weonsistent grid
map surrounding of the vehicle. And when new laser measurenae coming,
dynamic objects can be then detected based on their diswiegawith the con-
structed grid map. Related results have been presented prexious publication
[9] and in this paper we employ the radar data combined witleatldetection

results from laser data in order to obtain a more robust padace.



In the second part, previously detected moving objectsenvéhicle environment
are tracked. Since some objects may be occluded or not ddfesctime are false
alarms, multi object tracking helps to identify occludedealts, recognize false
alarms and reduce missed detections. In general, the nhjgitictracking problem
is complex: it involves the definition of filtering methods wsll as the data as-
sociation methods and maintenance of the list of objecteently present in the
environment [10]. Regarding the filtering techniques, Kailrfithers [11] and par-
ticle filters [12] are mostly used. These filters require teérdtion of a specific
dynamic model of tracked objects. However, defining a sigtatotion model is
a real difficulty. In practice Interacting Multiple ModelslL3] have been success-
fully applied. In the previous works [14], we have developddst method to adapt
on-line IMM according to trajectories of detected objeatd &o we obtain a suit-
able and robust tracker. To deal with the data associatidrtrack maintenance
problem, we extend our approach to multiple objects tragxkising the Multiple
Hypothesis Tracker (MHT) [15][16].

1.1 Experimental platform

laser field of view

“". radar field of view

Fig. 2. Left: the Daimler demonstrator car. Right: an example of sensords¢s measure-
ments are displayed in small red dots and radar measurements displayegeasibig.

The proposed algorithm for solving SLAM and DATMO is testeddata collected
from the Daimler demonstrator car equipped with a camemstvort range radars
and a laser scanner (Fig. 2). The laser scanner can detéatiglssat a range of 70
m under a field of view of 160 It provides raw data as a list of impacts with an
angular resolution of°1 The radars detect targets up to 30 m within a field of view
of 80° and return pre-filtered data as a list of "dot” objects witkithestimated
positions and Doppler velocities (Fig. 2 right). In additieehicle odometry infor-
mation such as velocity and yaw rate are provided. The measant cycle time of
the sensor system is 40 ms.

In our implementation, laser data is used to perform mappswgell as detection
and tracking of moving objects. Radar data is then fused aghrldata to confirm
the results obtained by laser data in order to give a mora&aielresults on detection
and tracking objects in the radar field of view. Images froomeea are only for

visualization purpose.



2 RELATED WORK

Before discussing in detail our approach to problems of SLAM BATMO, it is
interesting to recall some notable works in the domain.

One of the first works on SLAM with DATMO was that of Prasslegioup [1].
They described a first system on automated wheelchairsdtc sind dynamic ob-
ject detection, moving object tracking and obstacle avada The environment is
represented by a time stamp grid map that provide a intagestay to detect and
track moving objects. However, this method rely completgiyodometry informa-
tion with suppose that the odometry is ideal and it cannaeatetbjects moving
slowly. Although the proposed solution is not really cont@ldt identified the need
of both SLAM and DATMO for automated mobile systems.

Haehnelet al. in [2] used a feature-based approach to identify pedestifianm
laser range scans and use Joint Probabilistic Data Aseoc@rticles filters [17]
to track moving pedestrians indoor. The corresponding oreasents are then fil-
tered out and classical scan registration and mapping igobs in static environ-
ment are used. However, this approach is not able to worktishomu environment
where various dynamic objects can not be described by sifeatares.

Wang [3] developed the first outdoor real-time system sghoth SLAM and
DATMO simultaneously for urban environments from a grouedicle. To correct
the vehicle odometry he used an ICP-based matching scan dnatitb moving
objects are detected based on a simple geometric analysisldd presented a
mathematical framework integrating both SLAM and DATMO asttbwed that
they can be mutually beneficial from each other. The ideaas tifee results of
SLAM will be more accurate if moving objects can be filtered and thanks to a
more accurate pose estimation and a better map from SLAMMIATan detect
and track moving objects more reliably.

Recently after a series of DARPA Grand Challenge competiti®hsve have been

seen significant advances in effort of building autonomaeisiales. It has been
shown that victory cars [4] [5] are capable of operating aatnously and safely
through different kinds of environments, from static (dé&seto dynamic environ-

ments (urban-like traffics). Undoubtedly without a poweéiperception module,

their success can not be achieved. That is the reason why 8y pnecise and

expensive sensors are used, such as 3D laser scannerseBdasners, precise
inertial sensors, radars, vision ... [4] [5].

Inspired by the pioneer work of Wang SLAM and DATMO, our olijee here is
trying to put forward the state of the art solutions to thessks in order to build
a reliable vehicle perception system with affordable senge.g. 2D laser scan-
ner, short range radars). To this end, we introduce a nevgfasbased laser scan
matching method to correct vehicle odometry that worksezmély well even in



the presence of dynamic entities. It will be shown later thét is an important
step to build an accurate map of the environment and helptézt@oving objects
reliably. We also present a new approach of multiple objactking capable of on-
line adapting movements of moving objects which resultsnmogae robust tracker.
Parts of this work have been published separately in [9].[14]

In the following section, we describe in detail our approtxkehicle localization
and environment mapping. Algorithm for detecting movingeaks is presented in
Section 4. Multi objects tracking approach is detailed ict®a|5. Experimental
results are reported in Section 6 and finally conclusionsfaiuge works are given
in Section 7.

3 LOCAL SLAM

To model the environment surrounding of vehicle, we empleydccupancy grid
framework proposed by Elfes [8]. Compared with feature-Oagmgproaches [18],
grid maps can represent any environment and are speciaabkifor noisy sen-
sors in outdoor environments where features are hard toedefid extract. Grid-
based approaches also provide an interesting mechanistegpate different kinds
of sensors in the same framework taking the inherent unogrtaf each sensor
reading into account.

To perform mapping, only laser data is used. For our purpdésafety vehicle
navigation, a good global map is not necessary, so that titdgm of revisiting or
loop closing in SLAM is not considered in this work. For thesason, we propose
an incremental mapping approach based on a fast laser sdahimgaalgorithm
in order to build a consistent local vehicle map. The map cabgd incrementally
when new data measurements arrive along with good estirogtesicle locations
obtained from the scan matching algorithm. The advantafjesioincremental
approach are that the computation can be carried out vecklguand the whole
process is able to run online.

3.1 Notation

Before describing our approach in detail, we introduce sootations used. We
denote the discrete time index by the variaéhe laser observation from vehicle
at timet by the variablez = {7, ...,Z‘} includingK individual measurements cor-
responding t laser beams, the vector describing an odometry measuréroent
timet — 1 to timet by the variablay, the state vector describing the true location
of the vehicle at time by the variablex;.



3.2 Occupancy Grid Map

In this representation, the vehicle environment is divided a two-dimensional
lattice M of rectangular cells and each cell is associated with a medaking a
real value in[0, 1] indicating the probability that the cell is occupied by arsiab
cle. A high value of occupancy grid indicates the cell is g@ed and a low value
means the cell is free. Assuming that occupancy states ofidh@l grid cells are
independent, the objective of a mapping algorithm is toveste the posterior prob-
ability of occupancyP(m|xy+,21¢) for each celim of the grid, given observations
711 ={z,...,z} at corresponding kKnown poses; = {Xg,..., X }-

Using Bayes theorem, this probability is determined by:

P(z | X11,z11-1,m) . P(M|X1t,Z14-1)

P(M|X11,211) =
(M[X11,211) P(z |X1t,211-1)

(1)

If we assume that current measuremgnis independent fronx;y_1 andzit_ 1
given we knowm, P(z |X1t,z11—1,m) = P(z|%,m). Then after applying Bayes
Theorem tdP(z | %, m), equation/(1) becomes:

P(m|x,z).P(z|%).P(m|X1t,211-1)

P(m|x11,211) =
(M|X1t,211) P(m).P(z|X1t,211-1)

(2)

Equation|((2) gives the probability for an occupied cell. Bylagy, equation (3)
gives the probability for a free cell:

P(M|x,z).P(z |%).P(M|X1t,Z11-1)

P(M|X1t,211) = 3
(M1, 212) P(M).P(z |X1t,211-1) ()

By dividing equation (2) by (3), we obtain:
P(m|xwt,z11) _ P(M|x,z) P(M) P(M[x11-1,211-1) @

P(M|x1t,211) P(M|%,z) P(m) P(M|X1t-1,Z11-1)

P(X)

If we defineOddsgx) = gl = ;5%

(
P(X)

equation/(4) turns into:
Oddsm|xi1,211) = Oddgm|x,z).0ddgm)t.0oddsm|x11_1,z1¢-1)  (5)
The correspondintpg Oddsrepresentation of equation (5) is:

logOdds$m|Xy+,21+)
= log Oddgm|z,%) —logOddsm) +log Odd$m|xy1-1.z11-1) (6)



In (6), what we need to know are two probability densitleen|x;,z) andP(m).
P(m) is the prior occupancy probability of the map cell which i$ ®e0.5 rep-
resenting an unknown state, that makes this componentptiaapl he remaining
probabilityP(m|x, z), is called thenverse sensor modédt specifies the probabil-
ity that a grid celimis occupied based on a single sensor measurematibcation
. Fig. 3 shows the function we use to compute the occupandyapility of grid
cells along a laser beam measuring a distanak of

occupancy probability =———

06

probability

0.2

d

Fig. 3. Profile of an inverse sensor model illustrates the occupancglpitity along a laser
beam measuring a distancedf

From thelog Oddsrepresentation, the desired probability of occupa®(@w| X1+, 21+)
can be easily recovered. And since the updating algoritiretisrsive, it allows for
the map updated incrementally when new sensor data arrives.

The second image in Fig 6 shows an example of an occupancsngpdonstructed
from laser measurements during the vehicle’s movementcdloe of grid map cell
indicates the probability that corresponding space betogipied: grayanknown
white=free, black=occupied

3.3 Localization in Occupancy Grid Map

In order to build a consistent map of the environment, a gagdole localization

is required. Because of the inherent error, using only odgnaéten results in an
unsatisfying map (see Fig. 4 left). When features can not bieretband extracted,
direct scan matching techniques like ICP [19] can help toemtrthe odometry
error. The problem is that sparse data in outdoor enviromsnamd dynamic en-
tities make correspondence finding difficult. One importdisadvantage of the
direct scan matching methods is that they do not considedthamics of the ve-
hicle. Indeed we have implemented several ICP variants [@8]faund out that

scan matching results are unsatisfactory and often leaddrpected trajectories
of vehicle. This is because matching only two consecutie@senay be very hard,
ambiguous or weakly constrained, especially in outdooirenment and when the
vehicle moves at high speeds.
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Fig. 4. Hit maps build directly from raw laser data collected from a vehicle ngpalong
a straight street: with vehicle localization using odometry (left); and usingtsesf scan
matching (right). Note that the scan matching results are not affected by gnobjects in
the street.

An alternative approach that can overcome these limitatcamsists in setting up
the matching problem as a maximum likelihood estimationhis approach, given
an underlying vehicle dynamics constraint, the currenhgmasition is corrected
by comparing with the local grid map constructed from allervations in the past
instead of only with one previous scan. By this way, we cancedhe ambiguity
and weak constraint especially in outdoor environment amehthe vehicle moves
at high speed. Mathematically, we calculate a sequences#s®, Xo, ... and se-
guentially updated map¥g1, My, ... by maximizing the marginal likelihood of the
t-th pose and map relative to tie— 1)-th pose and map:

% = argxImaX{P(zt | X, Me—1) . P(% [%—1,Ut) } (7)

In the equation (7), the terf(z | %, M;_1) is the measurement model which is the
probability of the most recent measuremangiven the pose; and the magv;_1
constructed so far from observationg_; at corresponding poses;_ 1 that were
already estimated in the past. The tePx; | %_1,U) represents the motion model
which is the probability that the vehicle is at locatiqrgiven that the vehicle was
previously at positiorx;”~; and executed an actiag. The resulting pos# is then
used to generate a new misp according to|(6):

Mt - Mt_]_U{)’zt,Zt} (8)

Now the question is how to solve the equation (7), but let «& filescribe the
motion model and the measurement model used.

For the motion model, we adopt the probabilistic velocitytim model similar to
that of [21]. The vehicle motiony is comprised of two components, the transla-
tional velocityv; and the yaw ratey. Fig.'5 depicts the probability of a vehicle
being at locatiorx; given its previous locatior 1 and controly. This distribution



Fig. 5. The probabilistic velocity motion modBlx | %1, u) of the vehicle (left) and its
sampling version (right).

is obtained from the kinematic equations, assuming thaicieemotion is noisy
along its rotational and translational components.

For the measurement mode(z | x, M;_1), mixture beam-based model is widely
used in the literature [22][23]. However, the model comehat éxpense of high
computation since it requires ray casting operation fohdaam. This can be a
limitation for real time application if we want to estimatdamge amount of mea-
surements at the same time. To avoid ray casting, we propoakesnative model
that only considers end-points of the beams. Because iglylitkat a beam hits an
obstacle at its end-point, we focus only on occupied celteegrid map. A voting
scheme is used to compute the probability of a scan measotenggven the vehi-
cle posex; and the map/;_1 constructed so far. First, from the vehicle location
individual measuremer# is projected into the coordinate space of the map. Call
hit¥ the grid cell corresponding to the projected end-point aheaeamg’. If this
cellis occupied, a sum proportional to the occupancy valtiesocell will be voted.
Then the final voted score represents the likelihood of thasmement. LeP(M/)
denote the posterior probability of occupancy of the gridl BB estimated at time

t (following (6)), we can write the measurement model understhm following:

K itk itk
P(z |x%.Mi—1) O 5 {P(M™) so thatM"} is occupied (9)
k=1

The proposed method is just an approximation to the measmemodel because
it does not take into account visibility constraints, bupestmental evidences show
that it works well in practice. Furthermore, with a comptgaf O(K), the compu-
tation can be done rapidly.

It remains to describe how we maximize (7) to find the correstg;. Hill climbing
strategy in [24][23] can be used but may suffer from a locakimam. Exploiting

the fact that the measurement model can be computed vergygwme perform an
extensive search over vehicle pose space. A sampling wes§ihe motion model
(Fig. 5 right) is used to generate all possible pogegven the previous pose_1

and the controly. The resulting pose will be the pose at which the measurement
probability achieves a maximum value. Because of the inheatfisoretization of
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Fig. 6. An example of scan matching. From left to right: reference image;cmagtructed
so farM;_; with previous vehicle locatio®;_1; new laser measurement and matching
result is obtained by trading off the consistency of the measurement with theunasthe
previous vehicle pose.

the grid, the sampling approach turns out to work very welpractice, with a grid
map resolution of 20 cm, it is enough to generate about fodiverhundreds of
pose samples to obtain a good estimate of the vehicle pokehetmeasurement
likelihood that is nearly unimproved even with more samplése total computa-
tional time needed for such a single scan matching is aboumd0n a low-end
PC. An example of scan matching result is shown in[Fig. 6. Thst tiely vehicle
pose is obtained when the laser scan is aligned with the aedtyyarts of the map
and at the same time the vehicle dynamics constraint idisdtis

Besides the computational effectiveness, one attractimuptlgorithm is that it
is not affected by dynamic entities in the environment (sige #right). Since we
only consider occupied cells, spurious regions in the oaoap grid map with low
occupancy probability that might belong to dynamic objelctsot contribute to the
sum|((9). The voting scheme ensures that measurement bkeliftach a maximum
only when the laser scan is aligned with the static partseétivironment. To some
meaning, measurements from dynamic entities can be coadids outliers of the
alignment process. This property is very useful for movibgeot detection process
that will be described in the next section.

3.4 Local mapping

Because we do not need to build a global map nor deal with locagray problem,
only one online map is maintained representing the locatemment surrounding
of the vehicle. The size of the local map is chosen so thaobiikshnot contain loops
and the resolution is maintained at a reasonable levelyEwee the vehicle arrives
near the map boundary, a new grid map is reinitialized. Tree md the new map
is computed according to the vehicle global pose and cdliglénthe intersection
area are copied from the old map.
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4 MOVING OBJECTS DETECTION

In the previous section, we represent how to obtain preasecle localization
and how to build local vehicle grid map from laser data. Irs thection we will
describe how to identify moving objects by using the preslgwonstructed grid
map. Detected objects are then confirmed using radar datthamdrelocities are
estimated.

4.1 Using Occupancy Grid to detect Moving Objects

After a consistent local grid map of the vehicle is consed¢imoving objects can
be detected when new laser measurements arrive by compdtinthe previously
constructed grid map. The principal idea is based on thensistencies between
observed free space and occupied space in the local mapoljjaat is detected
on a location previously seen as free space, then it is a mmbject. If an object
is observed on a location previously occupied then it probialstatic. If an object
appears in a previously not observed location, then it castdtec or dynamic and
we set the unknown status for the object in this case.

Another important clue which can help to decide whether gaatlis dynamic or

not is evidence about moving objects detected in the pasteXample, if there
are many moving objects passing through an area then angtdbg appears in
that area should be recognized as a potential moving olifectthis reason, in
addition to the local static mady constructed as described in the previous section, a
local dynamic grid ma is created to store information about previously detected
moving objects. The pose, size and resolution of the dynamaig is the same as
those of the static map. Each dynamic grid &listore a valuer' indicating the
number of observations that a moving object has been passéuabcell. The
bigger value ofa', the more probability that object seeniitis moving.

From these remarks, our moving object detection processiiged out in two steps
as follows. The first step is to detect measurements thattrbgjbng to dynamic
objects. Here for simplicity, we will temporarily omit thante index. Given a new
laser scarz, the corrected vehicle location and the local static ivaand the dy-
namic mapD containing information about previously detected movittgeots,

state of a single measuremehis classified into one of three types following:

static i MMt = occupied
stat€Z) =< dynamic if M = free or D" > @

undecidedif M = unknown

11



Fig. 7. Moving object detection example. See text for more details.

whereMM* and D"t are the corresponding cells of the static and dynamic map
respectively at the end-poihitk of the bean®, o is a pre-defined threshold.

The second step when measurements that might belong to dymédects are

determined, moving objects are then identified by clusgeand-points of these
beams into separate groups, each group represents a sojgbe. Gwo points are

considered as belonging to the same object if the distarteesba them is less than
a threshold of @ m that is chosen empirically .

Fig. 7 illustrates the described steps in detecting movhjgats. The leftmost im-
age depicts the situation where the vehicle is moving alosgye®et seeing a car
moving ahead and a motorbike moving in the opposite diracfithe middle im-
age shows the local static map and the vehicle location \Wwétctrrent laser scan
drawn in red. Measurements which fall into free region in stegtic map are de-
tected as dynamic and are displayed in the rightmost imaffer fhe clustering
step, two moving objects are identified (in green boxes) amckectly corresponds
to the car and the motorbike.

4.2 Fusion with radar

The general purpose of the data fusion is to provide a moiabteland more ac-
curate model than a single data would provide. After movibgcts are identified
from laser data, we confirm the object detection results biphing with radar data
and estimate velocities of the detected objects.

With the radar sensors being used, a built-in preprocegsitige radar measure-
ments takes place, wherein reflections with a similar dcstarelative velocity, and
amplitude are grouped together. The radar sensors retesfiltgred data as lists of
potential moving objects. The object lists of the two radaes independent from
each other. Each object is provided with information abdet lbcation and the
Doppler velocity. For each moving object detected fromdaksda as described in
the previous section, a rectangular bounding box is caledland the radar mea-
surements which lie within the box region are then assigonembtresponding ob-

12



ject. The velocity of the detected moving object is estirdate the average of these
corresponding radar measurements.

Fig.|8 shows an example of how the fusion process takes pldoe@ng objects
detected by laser data are displayed in red with green bogrtixes. The targets
detected by two radar sensors are represented as smadisainctiifferent colors
along with corresponding velocities. We can see in the réiddd of view, two
objects detected by laser data are also seen by two raddratdbey are confirmed
and their velocities are estimated. Radar measurementddhait correspond any
dynamic object and fall into other region of the grid are nmsidered. Since the
radar is setup with the field of view much smaller than therléiséd of view (Fig.
2), the fusion process indeed did not help much to improveottezall detection
results but we can see how detection results could be imgrifv@ore sensors
available.

Fig. 8. Moving object detected from laser data is confirmed by radar data.

5 MULTIPLE HYPOTHESIS TRACKING USING ADAPTIVE IMM

The aim of multi-object tracking is to estimate the numbed #re states of real
objects evolving in the environment by generating and naairig during time a
set of tracks according to detected (observed) oﬁ?}Leotstained at each step. For
convenience we cattack a tracked object that is composed by a list of detected
objects. This involves a choice of filtering methods, bub alata association meth-
ods and a maintenance of the list of objects currently ptasethe environment.
The most known techniques are the the Global Nearest NeidGNN) combined
with filtering, Joint Probabilistic Data Association Filt()PDAF) and the Multi-
ple Hypothesis Tracking (MHT) [10][21]. In the conventidi@@NN only the most
likely assignment is considered at each step, allowing ¢mlgssociate at most

1 usually the termobservationis used in such a case but as in our work raw sensors ob-
servations are treated to obtaietectionsthe termdetected objecwill be use for more
clarity

13
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Fig. 9. Architecture of multi-object tracking system

one detected object to one track. The JPDAF method perméssign several de-
tected objects to one track by weighted probabilistic suevextheless, it works
with a fixed number of tracks and increase the track statertaioty since several
objects with different positions can update on unique trétiMHT alternative as-

sociations hypotheses are build over time. In conflict sibug, instead of taking

a decision (GNN) or combining hypotheses (JPDAF), hypabese propagated
into the future in anticipation that it will resolve the as&dion uncertainty.

The basic principle of MHT is to generate and update a setsafaation hypothe-
ses during process. An hypothesis corresponds to a spembalpe assignment
of detected objects with tracks. By maintaining and updasiexgeral hypotheses,
none irreversible association decisions are made and amisgcases are solved
in further steps. Reid introduces first a complete algoritliverga systematic way
in which multiple data association hypotheses can be forameldevaluated for the
problem of multiple target tracking [25]. It permits to systatically generate and
evaluate hypotheses by building track trees. For thesemsawe based our MHT
on this efficient algorithm.

Regarding tracking techniques, Kalman filters [11] or péetiitters [12] are gener-
ally used. These filters require the definition of a specificadyic model of tracked
objects (ie, a motion model). However, defining a suitableiomomodel is a real
difficulty. To deal with this problem, Interacting Multiplglodels [13][26] have
been successfully applied in several applications.

The IMM approach overcomes the difficulty due to motion uteiaety by using
more than one motion model. The principle is to assume a sebdEls as possible
candidates of the true displacement model of the object attiome. To do so,
a bank of elemental filters is ran at each time, each correspgro a specific
motion model, and the final state estimation is obtained bsgimg the results of
all elemental filters according to the distribution proti&pbver the set of motion
models. By this way different motion models are taken intamaot during filtering
process. In previous works [27] [14], we have developed arfeethod to adapt
on-line IMM according to trajectories of detected pedastrand so we obtain a
suitable and robust tracker. In this work we extent this roétim order to track

14



dynamic objects in the vehicle environment.

As shown in Fig. 9, our multi-object tracking method is corsga of four different
parts:

e The first one is the gating. In this part, taking as input preoins from previ-
ous computed tracks, we compute the set of new detectedt®bybch can be
associated to each track.

¢ In the second part, using the result of the gating, we perfoloject to tracks
association and generate association hypotheses, eakltctnaesponding to a
previously known moving object. Output is compoed of the pataed set of
association hypotheses.

¢ In the third part called track management, tracks are coefiirdeleted or cre-
ated according to the association results and final traels ee output.

¢ In the last part corresponding to the filtering step, es&@sare computed for
'surviving’ tracks and predictions are performed to be ugednext step of the
algorithm. In this part we use an adaptive method based endcting Multiple
Models (IMM).

5.1 Gating

In this part, taking as input predictions from previous comag tracks and newly
detected objects, a gating is performed. It consists imraoeg to an arbitrary dis-
tance function, determine the detected objects which casbeciated with tracks.
Also during this stage, clustering is performed in orderdgduce the number of
association hypotheses. It consists in making clustensoks$ which share at least
one detected object. In the next stage, association canrfzgrped independently
for each cluster decomposing a large problem in smallerlenod which induce
generation of less hypotheses.

T1 X

AN T1's gate T2's gate />< T2

N s

s
7’

Fig. 10. Example of association problem

If we take as an example the situation depict by the Fig. 1fhisistage one set is
computed a3; andT, share objecD,. Also according to gates, objed®s andO,
can be assigned th and object$, andOs to Ts.
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5.2 Association

In this part, taking as input clusters of tracks and deteotgdcts validated by the
gating stage, association hypotheses are evaluated. Bydedng likelihood of
objects with tracks, new track apparition probability am+detection probability,
an association matrix is formed.

Let beL(0i,tj) the function giving the likelihood of objedtwith track j, Pyt the
new track apparition probability arfép the non detection probability. Alway tak-
ing as an example the situation in the Fig. 10, the assoniatitrix is written:

L(0g,t1) —o Pt
L(0g,t1) L(02,t2) Pyt
—oo  L(0g,tz) AT
Pvp Pnp  —o0

Thus a possible association hypothesis corresponds todhasdignation in the
matrix of detected objects with tracke one unique element in each row and each
column is chosen to compose the assignation. In order tcceethe number of
hypothesis, only the m-best association hypotheses agdsyad as done in Cox
work [28] using this matrix. This m-best implementation bétReid’s algorithm
permits to reduce the number of hypotheses and thus to ¢tonérdrees’ growth

in width. So for each cluster (each set of tracks sharingastlene detected ob-
jects) the m-best assignment in the association matrixangated using the Murty
method [29] which computes the m-best assignations in thexozand by this way
be obtain the m-best Hypotheses.

5.3 Track management

In this third stage, using the m-Best Hypotheses resultinthefassociation stage,
the set of track trees, is maintained tracks are confirmed, deleted or created.
The track management consists in only kept the branchedeath attached to the
m-best hypothesis and prune all other branches. New traeksraated if a new
track creation hypothesis appears in the m-best hypoth&se=w created track is
confirmed if it is updated by detected objects after a fixedlmemof algorithm steps
(three in our implementation). Thus spurious measureméithacan be detected
as objects in the first step of our method are never confirmed.

If a non-detection hypothesis appears and so to deal witkdetection cases (which
can appear for instance when an object is occulted by an ottegrtracks without
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associated detected objects are updated according toldsemssociated objects
and next filtering stage becomes a simple prediction. Butr&ektis not updated
by a detected object for a given number of steps, it is deleted

Furthermore, to reduce the continuously tracks’ growthptirer pruning is per-
formed. Typically trees’ growth is controlled in length Hyetso called N-Scans
pruning technique which consists in only kept théast scans in the trees. By this
way, the maximum length of tracks treesNsand it permits to apply the MHT
algorithm on realistic problems.

5.4 Adaptive Filtering using Interacting Multiple Models

A

Predictions

Filtering

Pruned Track Tree Adapted TPM
I — IMM Filter

Estimated Track Trees TPM adaptation

Most Probable trajectories

Trajectories

To Users

\/

Fig. 11. Principle of our adaptive filtering program

As the quality of gating relies directly on the quality ofédiing and especially the
prediction step, we have chosen Interacting Multiple Med#&M) [13][26] to
deal with motion uncertainties in this filtering part.

Besides, we developed an efficient method in which criticedupeeter of the IMM
is on-line adapted [27][14] according to the most probafdgettories formed by
tracks. Thus as Fig. 11 shows our filtering stage is composéaree parts : an
IMM filtering part, a part in which most probable trajectariare computed and a

last part in which we adapt the IMM filter.
Principle:

As explained, the IMM approach overcomes the difficulty doiemiotion uncer-
tainty by using a set oM elemental filters at each time, each corresponding to a
specific motion model, and the final state estimation is akthiby merging the
results of all filters according to the distribution prodiypiP(u) over the set of
motion models. Also, the probability the object changes ispldcement model
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is encoded in a transition probability matrix(TPM) whiclveg the distribution
P( | 1), i.e the transition between models which is assumed Maakovi

VA
T POe-1)| PO®) [
Filter 1
& P(x-1)| P(x) & p(x)
E Filter 2 g
P(X-1) | P(%)
Filter 3

Fig. 12. Principle of IMM

One cycle of an IMM is composed of tree steps (Fig. 12): A stepvhich filter
execution is done anl( ) is updated, a fusion step allowing to compute estimate
fusion and a reinitialization step.

An unique filter give us the distribution at tinteover object state; knowing the
current detected objegt and previous estimatioR(x|z ). Also, P(ut) is updated
according tdP( k| 1) corresponding to the TPM, it gives the transition probabil-
ity between modes and so is defined as a ma(iy; 1) is the previous distribution
over models and the likelihood of the current detected abyib each filter.

Thus as we use a bank of filters and we want to obtain an estiiusiten P(X; ),
according to all filters outputs. The estimate fusion is wigtd by:

M
POY) = 3 P( [k =m)) P(x[2) (10)

m=1

Also during the computation process, the new distributimbpbility over models
P(u) is computed and store for each hypothesis.

To obtain new predictions, filters are reinitialized acaogdfilters outputs and in
each filter the corresponding dynamic model is applied. By way, we obtairM
predictions per leaf which will be use in the gating stage.

Definition of our IMM:

Nevertheless, to apply IMM on real applications a numberriical parameters
have to be defined, for instance the set of motion models anttdahsition proba-
bility matrix(TPM). To cope with this design step which canmatch the reality,
we propose an efficient method in which the TPM is adapteahenli
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Fig. 13. The sixteen chosen motion models in the vehicle’s frame

The first step to apply our method is to define an appropriatd 8d, in particular,
models which compose it. In specific applications, différejects such as cars
or motorcycles can move in any directions and can often ahadingirs motions.
Thus in our aim we choose various IMM’s models to cover theasgiossible
directions and velocities. In previous work for one pedasttracking we focused
only on directions but here we focus on a range of velocitibgenkeeping a set
of directions to cope with directions’ transition in vel@sl behavior. As each filter
corresponds to a specific motion model, we have to define eatiormmodel.
So, assuming we have different possible velocities deficedrding to the vehicle
velocity and eight directions in the set of possible di@tsi an object can follow,
we obtain sixteen motion models (Fig. 13).

Hence, according to the definition of these sixteen motiomets our IMM is
composed of sixteen filters. Kalman filters are chosen folempntation as they
allow fast computation.

We must usually also define the TPM. As we develop a methodhwtoeenputes
the TPM online, we do not need specific informations coneogrtine TPM and no
modeling are needed. So the TPM is initially chosen to beoumif As eight modes
are defined, the TPM is an uniform squarex1®6 matrix. In the next part of the
text, we will see how the TPM is on-line adapted.

5.4.1 Computation of the most probable trajectories

Once estimates are performed in all track trees leafs, tret probable trajectory
is computed for each track. Basically, it consists in takimg branch having the
maximum probability (computed during filtering) to obtaineounique hypothesis
for one given track tree. This step permits to give users meadability on what
is happening during tracking process and also permits udaptan-line the IMM
parameter according to these trajectories.
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5.4.2 Adaptation of the IMM

To adapt the TPM in our specific situatior tracking detected objects, most prob-
able trajectories are considered. Taking as input the sehmctories computed
during filtering process, we will adapt one-line the TPM d# tMM filter in order

to obtain a better transition between motion models clog@eaeal behavior of
tracked objects.

The principle is the following. For a given numbhirof trajectories we build se-
guences of associated models probabilities.And thengubkise models probabili-
ties, the TPM is adapted and reused in the IMM filters for the estimations.In
more details, algorithm|1, given in pseudo-code, is therélyn defined to com-
pute one adaptation of the TPM.

Algorithm 1 Adaptive IMM Algorithm
1: Adaptation_of TPM(T, ..., Tn)

22n+—0

3: repeat

4. Sh—[]

5. [* Store y, ...l from T, the most probablet” trajectory */
6: forall Objectposein T, do

7 ) Ta(k)

8: Sh— SiU

9: endfor

10:  /* Compute the most probable model sequence MPS */
11:  MPS«+ Viterby($,)

12:  /* Quantification of model transitions */

13: for all Couple( MPS&, MP&. 1) in MPSdo

14: I — MP&

15: j — MP&.1

16: FHj=hHj +1

17: end for
18 hn«<n+1
19: until n=N

20: /* Update of TPM in IMM */
21: TPM < Normalizatior{F)
22: ReturnTPMin IMM

An adaptation of the TPM is done after a given numNeof trajectories obtained
from tracks, to update TPM using a window on trajectorigfslop line 3-19 of
algorithm 1). Moreover trajectories are processed one kyithree steps:

1- Models’ probabilities are collected by travel througk ttomputed most proba-
ble sequence

2- Most probable models’ sequence is computed

3- Most probable models’ transitions are quantified
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Collection of models’ probabilities: For each part of a given most probable tra-
jectory computed in last stages of the filtering process, ollect the distribution
over models(lines 7). Thus a model probabilities’ sequekoebtained in such a
way and is stored to be processed (line 8).

Computation of the most probable model sequence:ln a next step, the most
probable models’ sequence®fis computed (line 11). More precisely, considering
the actual TPM and a s&, = Lp...ux of model probabilities through time 0 to
K, we aim to obtain the most probable models’ sequence knothagstimates
computed by the IMM:

Max P(Ho Ha..-Hk | Xo X1 X« ) (11)

We just need to obtain the maximum of the distributiR{p Lo... Uk | Xo X1... Xk ),
thus the inference is made using the Viterbi Data Algoritl3®]] As complexity
of this algorithm is inO(KM?), we efficiently obtain the most probable models’
sequence.

Quantification of most probable model transitions: Using this most probable
models’ sequence, the number of transitions from one madahtother is quan-
tified (lines 13 to 17). To do so a frequencies matrix is coar@d. This matrix
models the number of transitions which have occurred froerandel to an other.
We noteF this matrix and s&j gives the number of transitions which has occurred
from modeli to j. Using the most probable models’ sequence correspondiag to
specific trajectory and computed by the Viterbi algorithive tipdate of is di-
rectly obtained by counting transitions in this sequencetifermoref is kept in
memory to be used in next adaptation and before the first apbits elements
aresetto 1.

Finally, whenN trajectories have been treated, the new TPM is obtained by no
malization of the frequencies matrix. Thus the TPM is re-estimated using all

model sequenceS;...Sy and is reused in the IMM for next executions (lines 21
and 22). In practice, before the first run, the TPM is chosefoum (according to

F initialization) as we do not want to introduegpriori data.

By this way an on-line adaptation of the TPM is obtained. Thius effectiveness
of filtering part of our MHT is improved since the predictionality is enhanced
by our method. And so, the quality of the whole MHT is improved

Example of adaptation result:

Following the numeration of the different motion models deél in Fig. 13, the
16 x 16 frequencies matrix are shown on Fig! 14, Fig. 15 and FigatXBree dif-
ferent steps of the execution process. We can see that aerdjectories some
transitions appear to be more frequent than other (Fig.Ald}, after twenty five
trajectories (Fig. 15) the continuous adaptation makesapglearly different be-
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Fig. 14. Frequencies matrix obtained after five trajectories

g

Fig. 15. Frequencies matrix obtained after twenty five trajectories

Fig. 16. Frequencies matrix obtained after fifty trajectories

haviors, especially transitions between models orierdeld front and the back of
the vehicle (models number from two to eight and from ninefteé'nﬁ. After a
number of trajectories, an efficient model of the real olgjdmthaviors is obtained.
Without our automatic and one-line adaptation it would Héadilt to model such
behaviorsa priori and impossible to continuously model the real behavior ef ob
jects during one or several processes. Furthermore, adfBi#M which model the
real objects’ motion improve the quality of the IMM filterirand thus the quality
of the whole filtering process.

2 According to nonholonomic constraints we cannot obtain direct transitionstfre front
model to the back model for instance but as shown in the results transitionsdreadja-
cent models occur
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6 EXPERIMENTAL RESULTS

Our proposed algorithms for objects detection and tracisitgsted on datasets col-
lected with the DaimlerChrysler demonstrator car. The ueh@s driven through
different kinds of scenarios such as city streets, courtags and highways with a
maximum speed of 120 kph. In our implementation, the widith lagight of local
grid map are set to 160 m and 200 m respectively, and the ggaugon is set to
20 cm. Every time the vehicle arrives at 40 m from the grid bard new grid map
is created. The object detection is run for every new lasen snd the tracking
process is updated according to the detection results.

Fig.[17 shows some snapshots of the moving object deteatidiracking process
in action. The images in the first row represent online magsabjects moving
in the vicinity of the vehicle are detected and tracked. Timeent vehicle location
is represented by blue box along with its purple trajectodtter corrected from
the odometry. The red points are current laser measurertieitare identified as
belonging to dynamic objects. Green boxes indicate deteante tracked moving
objects with corresponding tracks displayed in differesibcs. Information on es-
timated velocities is displayed next to detected objedte. Jecond row are images
for visual references to corresponding situations.

Fig. 17. Experimental results show that our algorithm can successfuftyrpeboth SLAM
and DATMO in real time for different environments

In the figure, the leftmost column depicts a scenario whezeldmonstrator car is
moving at a very high speed of about 100 kph while a car movnthe same
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direction in front of it is detected and tracked. On the nigbst is a situation
where the demonstrator car is moving at 50 kph on a countrgy. rAecar mov-
ing ahead and two other cars in the opposite direction areeatignized. Note
that the two cars on the left lane are only observed duringrg skort period
of time but both are detected and tracked successfully. fing situation in the
middle, the demonstrator is moving quite slowly at about p@ kn a crowded
city street. Our system is able to detect and track both therotehicles and the
motorbike surrounding. In all three cases, precise trajexg of the demonstra-
tor are achieved and local maps around the vehicle are catetk consistently.
In our implementation, the computational time required éofgrm both SLAM
and DATMO for each scan is about 2080 ms on a 1.86GHz, 1Gb RAM lap-
top running Linux. This confirms that our algorithm is abgely able to run syn-
chronously with data cycle in real time. More results ancews can be found at
http://emotion.inrialpes.fr/ ~ tdvu/videos/

Quantitative results

Data Type| Real Objects Non-detections False Alarms| Total Tracks
City 57 7% 3% 88
Road 74 11% 3% 109

Highway 5 7% 1.5% 47

The table above shows quantitative results obtained usingnethod on three se-
guences of different types of environments. The first colamendifferent types of
scenario. The second column shows the numbers of real shjdneth entered the
vehicle’s sensors range which is manually counted. Thd tiimmber corresponds
to the numbers of steps in our algorithm in which one objectasdetected but
always tracked (non-detection cases). The fourth colurariree numbers of false
alarmsi.e when our detector (in some cases because of vehicle serssed de-
tected moving objects but our tracker recognized thesetiete In the last column
are the total numbers of tracks computed during the givenesezg.

The results show that during three sequences, most parjeftappearances are
tracked. We can note that the number of tracks remains mauertant than the
number of real objects. It is due to objects which moves acooglose to the sen-
sors’ range boundary. Indeed, close to the sensors’ rangedbaoy, laser sensor
loose precision and so the detection stage become leseeffidihen if an ob-
ject reappears in the sensor range it is so considered as anmeety our tracker.
Also, even if an important number of non-detections ancefalarms appears, the
tracking part permits to cope with such problems especsitige the quality of
prediction step is greatly improved by our adaptive IMM. @wo stage approach
permits to cope with sensors noise where an efficient detecireinforced by a
robust tracking of objects.
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7 CONCLUSIONS AND FUTURE WORKS

We have presented an approach to accomplish local mappihgdeiection and
tracking moving objects. Experimental results have shdwahaur system can suc-
cessfully perform a real time mapping and moving objectkirag from a vehicle
at high speeds in different dynamic outdoor scenarios. Ehdone based on a
fast scan matching algorithm that allows estimating peegshicle locations and
building a consistent map surrounding of the vehicle. Ateronsistent local ve-
hicle map is build, moving objects are detected and are é&xckliably using an
adaptive Interacting Multiple Models filter coupled with Bfultiple Hypothesis
tracker.

Future works include incorporating object models of sevpradefined classes
with specific shapes and sizes that give a more meaningfuéseptation of de-
tected objects instead of only sets of contour points as mcawent work. In
addition, algorithms of road detection and road type clasgion based on con-
structed grid map are being considered. The motivationasrbad detection can
help object detection step to filtering out noisy and irral@wdata off-the-road and
focus more on road-likely regions. In all, the fusion of a ieédh map, road de-
tection, moving object classification and tracking modwedainly will enable a
better interpretation of driving situations.
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