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Abstract

We present a real-time algorithm for simultaneous localization and local mapping(local
SLAM) with detection and tracking of moving objects (DATMO) in dynamic outdoor en-
vironments from a moving vehicle equipped with a laser scanner, short range radars and
odometry. To correct the vehicle odometry we introduce a new fast implementation of in-
cremental scan matching method that can work reliably in dynamic outdoor environments.
After obtaining a good vehicle localization, the map surrounding of the vehicleis updated
incrementally and moving objects are detected without a priori knowledge of the targets.
Detected moving objects are finally tracked by a Multiple Hypothesis Tracker (MHT) cou-
pled with an adaptive Interacting Multiple Model (IMM) filter. The experimental results
on datasets collected from different scenarios such as: urban streets, country roads and
highways demonstrate the efficiency of the proposed algorithm.

Key words: occupancy grid, simultaneous localization and mapping, moving object
detection, multiple object tracking, interacting multiple model, laser radar data fusion

1 INTRODUCTION

Perceiving or understanding the environment surrounding of a vehicle is a very im-
portant step in driving assistant systems or autonomous vehicles. The task involves
both simultaneous localization and mapping (SLAM) and detection and tracking of
moving objects (DATMO). While SLAM provides the vehicle witha map of static
parts of the environment as well as its location in the map, DATMO allows the ve-
hicle being aware of dynamic entities around, tracking themand predicting their
future behaviors. It is believed that if we are able to accomplish both SLAM and
DATMO reliably in real time, we can detect critical situations to warn the driver in
advance and this will certainly improve driving safety and prevent traffic accidents.

Preprint submitted to Elsevier 21 November 2008
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Fig. 1. Architecture of the perception system

In the literature, SLAM and DATMO have been attracted considerable research
works [1] [2] [3] and they also are essential parts of the perception modules in
driverless cars [4] [5] participating in the recent series of DARPA Grand Challenge
competitions [6]. However, for highly dynamic outdoor scenarios like in crowded
urban streets, there still remains many open questions. These include, how to rep-
resent the vehicle environment, how to obtain a precise location of the vehicle in
presence of dynamic entities, and how to differentiate moving objects and station-
ary objects as well as how to track moving objects reliably over time.

In this context, we designed and developed a generic perception architecture ad-
dressing these problems focusing on outdoor dynamic environments [7]. The ar-
chitecture (Fig. 1) is comprised of two main parts: the first part where the map of
vehicle environment is constructed and dynamic objects areidentified; the second
part where detected moving objects are verified and tracked.

In the first part of the architecture, to model the environment surrounding the ve-
hicle, we employ the occupancy grid framework proposed by Elfes [8]. In order
to perform mapping or modeling the environment from a movingvehicle, gen-
erally a precise vehicle localization is necessary. To correct vehicle locations from
odometry, we introduce a new fast laser-based incremental localization method that
can work reliably in dynamic environments. When good vehiclelocations are es-
timated, by integrating laser measurements we are able to build a consistent grid
map surrounding of the vehicle. And when new laser measurements are coming,
dynamic objects can be then detected based on their discrepancies with the con-
structed grid map. Related results have been presented in ourprevious publication
[9] and in this paper we employ the radar data combined with object detection
results from laser data in order to obtain a more robust performance.
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In the second part, previously detected moving objects in the vehicle environment
are tracked. Since some objects may be occluded or not detected, some are false
alarms, multi object tracking helps to identify occluded objects, recognize false
alarms and reduce missed detections. In general, the multi object tracking problem
is complex: it involves the definition of filtering methods aswell as the data as-
sociation methods and maintenance of the list of objects currently present in the
environment [10]. Regarding the filtering techniques, Kalman filters [11] and par-
ticle filters [12] are mostly used. These filters require the definition of a specific
dynamic model of tracked objects. However, defining a suitable motion model is
a real difficulty. In practice Interacting Multiple Models [13] have been success-
fully applied. In the previous works [14], we have developeda fast method to adapt
on-line IMM according to trajectories of detected objects and so we obtain a suit-
able and robust tracker. To deal with the data association and track maintenance
problem, we extend our approach to multiple objects tracking using the Multiple
Hypothesis Tracker (MHT) [15][16].

1.1 Experimental platform

Fig. 2. Left: the Daimler demonstrator car. Right: an example of sensor data,laser measure-
ments are displayed in small red dots and radar measurements displayed as bigger dots.

The proposed algorithm for solving SLAM and DATMO is tested on data collected
from the Daimler demonstrator car equipped with a camera, two short range radars
and a laser scanner (Fig. 2). The laser scanner can detect obstacles at a range of 70
m under a field of view of 160◦. It provides raw data as a list of impacts with an
angular resolution of 1◦. The radars detect targets up to 30 m within a field of view
of 80◦ and return pre-filtered data as a list of ”dot” objects with their estimated
positions and Doppler velocities (Fig. 2 right). In addition, vehicle odometry infor-
mation such as velocity and yaw rate are provided. The measurement cycle time of
the sensor system is 40 ms.

In our implementation, laser data is used to perform mappingas well as detection
and tracking of moving objects. Radar data is then fused with laser data to confirm
the results obtained by laser data in order to give a more reliable results on detection
and tracking objects in the radar field of view. Images from camera are only for
visualization purpose.
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2 RELATED WORK

Before discussing in detail our approach to problems of SLAM and DATMO, it is
interesting to recall some notable works in the domain.

One of the first works on SLAM with DATMO was that of Prassler’sgroup [1].
They described a first system on automated wheelchairs for static and dynamic ob-
ject detection, moving object tracking and obstacle avoidance. The environment is
represented by a time stamp grid map that provide a interesting way to detect and
track moving objects. However, this method rely completelyon odometry informa-
tion with suppose that the odometry is ideal and it cannot detect objects moving
slowly. Although the proposed solution is not really complete, it identified the need
of both SLAM and DATMO for automated mobile systems.

Haehnelet al. in [2] used a feature-based approach to identify pedestrians from
laser range scans and use Joint Probabilistic Data Association particles filters [17]
to track moving pedestrians indoor. The corresponding measurements are then fil-
tered out and classical scan registration and mapping techniques in static environ-
ment are used. However, this approach is not able to work in outdoor environment
where various dynamic objects can not be described by simplefeatures.

Wang [3] developed the first outdoor real-time system solving both SLAM and
DATMO simultaneously for urban environments from a ground vehicle. To correct
the vehicle odometry he used an ICP-based matching scan method and moving
objects are detected based on a simple geometric analysis. He also presented a
mathematical framework integrating both SLAM and DATMO andshowed that
they can be mutually beneficial from each other. The idea is that the results of
SLAM will be more accurate if moving objects can be filtered out and thanks to a
more accurate pose estimation and a better map from SLAM, DATMO can detect
and track moving objects more reliably.

Recently after a series of DARPA Grand Challenge competitions [6], we have been
seen significant advances in effort of building autonomous vehicles. It has been
shown that victory cars [4] [5] are capable of operating autonomously and safely
through different kinds of environments, from static (deserts) to dynamic environ-
ments (urban-like traffics). Undoubtedly without a powerful perception module,
their success can not be achieved. That is the reason why so many precise and
expensive sensors are used, such as 3D laser scanners, 2D laser scanners, precise
inertial sensors, radars, vision ... [4] [5].

Inspired by the pioneer work of Wang SLAM and DATMO, our objective here is
trying to put forward the state of the art solutions to these tasks in order to build
a reliable vehicle perception system with affordable sensors (e.g. 2D laser scan-
ner, short range radars). To this end, we introduce a new fastgrid-based laser scan
matching method to correct vehicle odometry that works extremely well even in
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the presence of dynamic entities. It will be shown later thatthis is an important
step to build an accurate map of the environment and help to detect moving objects
reliably. We also present a new approach of multiple object tracking capable of on-
line adapting movements of moving objects which results in amore robust tracker.
Parts of this work have been published separately in [9] [14].

In the following section, we describe in detail our approachto vehicle localization
and environment mapping. Algorithm for detecting moving objects is presented in
Section 4. Multi objects tracking approach is detailed in Section 5. Experimental
results are reported in Section 6 and finally conclusions andfuture works are given
in Section 7.

3 LOCAL SLAM

To model the environment surrounding of vehicle, we employ the occupancy grid
framework proposed by Elfes [8]. Compared with feature-based approaches [18],
grid maps can represent any environment and are specially suitable for noisy sen-
sors in outdoor environments where features are hard to define and extract. Grid-
based approaches also provide an interesting mechanism to integrate different kinds
of sensors in the same framework taking the inherent uncertainty of each sensor
reading into account.

To perform mapping, only laser data is used. For our purpose of safety vehicle
navigation, a good global map is not necessary, so that the problem of revisiting or
loop closing in SLAM is not considered in this work. For this reason, we propose
an incremental mapping approach based on a fast laser scan matching algorithm
in order to build a consistent local vehicle map. The map is updated incrementally
when new data measurements arrive along with good estimatesof vehicle locations
obtained from the scan matching algorithm. The advantages of our incremental
approach are that the computation can be carried out very quickly and the whole
process is able to run online.

3.1 Notation

Before describing our approach in detail, we introduce some notations used. We
denote the discrete time index by the variablet, the laser observation from vehicle
at timet by the variablezt = {z1

t , ...,z
K
t } includingK individual measurements cor-

responding toK laser beams, the vector describing an odometry measurementfrom
time t−1 to timet by the variableut , the state vector describing the true location
of the vehicle at timet by the variablext .
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3.2 Occupancy Grid Map

In this representation, the vehicle environment is dividedinto a two-dimensional
lattice M of rectangular cells and each cell is associated with a measure taking a
real value in[0,1] indicating the probability that the cell is occupied by an obsta-
cle. A high value of occupancy grid indicates the cell is occupied and a low value
means the cell is free. Assuming that occupancy states of individual grid cells are
independent, the objective of a mapping algorithm is to estimate the posterior prob-
ability of occupancyP(m|x1:t ,z1:t) for each cellm of the grid, given observations
z1:t = {z1, ...,zt} at corresponding known posesx1:t = {x1, ...,xt}.

Using Bayes theorem, this probability is determined by:

P(m|x1:t ,z1:t) =
P(zt |x1:t ,z1:t−1,m) .P(m|x1:t ,z1:t−1)

P(zt |x1:t ,z1:t−1)
(1)

If we assume that current measurementzt is independent fromx1:t−1 and z1:t−1

given we knowm, P(zt |x1:t ,z1:t−1,m) = P(zt |xt ,m). Then after applying Bayes
Theorem toP(zt |xt ,m), equation (1) becomes:

P(m|x1:t ,z1:t) =
P(m|xt ,zt) .P(zt |xt) .P(m|x1:t ,z1:t−1)

P(m) .P(zt |x1:t ,z1:t−1)
(2)

Equation (2) gives the probability for an occupied cell. By analogy, equation (3)
gives the probability for a free cell:

P(m|x1:t ,z1:t) =
P(m|xt ,zt) .P(zt |xt) .P(m|x1:t ,z1:t−1)

P(m) .P(zt |x1:t ,z1:t−1)
(3)

By dividing equation (2) by (3), we obtain:

P(m|x1:t ,z1:t)

P(m|x1:t ,z1:t)
=

P(m|xt ,zt)

P(m|xt ,zt)
.
P(m)

P(m)
.
P(m|x1:t−1,z1:t−1)

P(m|x1:t−1,z1:t−1)
(4)

If we defineOdds(x) = P(x)
P(x) = P(x)

1−P(x) , equation (4) turns into:

Odds(m|x1:t ,z1:t) = Odds(m|xt ,zt).Odds(m)−1
.Odds(m|x1:t−1,z1:t−1) (5)

The correspondinglog Oddsrepresentation of equation (5) is:

logOdds(m|x1:t ,z1:t)

= logOdds(m|zt ,xt)− logOdds(m)+ logOdds(m|x1:t−1,z1:t−1) (6)
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In (6), what we need to know are two probability densities,P(m|xt ,zt) andP(m).
P(m) is the prior occupancy probability of the map cell which is set to 0.5 rep-
resenting an unknown state, that makes this component disappear. The remaining
probabilityP(m|xt ,zt), is called theinverse sensor model. It specifies the probabil-
ity that a grid cellm is occupied based on a single sensor measurementzt at location
xt . Fig. 3 shows the function we use to compute the occupancy probability of grid
cells along a laser beam measuring a distance ofd.

Fig. 3. Profile of an inverse sensor model illustrates the occupancy probability along a laser
beam measuring a distance ofd.

From thelog Oddsrepresentation, the desired probability of occupancyP(m|x1:t ,z1:t)
can be easily recovered. And since the updating algorithm isrecursive, it allows for
the map updated incrementally when new sensor data arrives.

The second image in Fig 6 shows an example of an occupancy gridmap constructed
from laser measurements during the vehicle’s movement. Thecolor of grid map cell
indicates the probability that corresponding space being occupied: gray=unknown,
white=free, black=occupied.

3.3 Localization in Occupancy Grid Map

In order to build a consistent map of the environment, a good vehicle localization
is required. Because of the inherent error, using only odometry often results in an
unsatisfying map (see Fig. 4 left). When features can not be defined and extracted,
direct scan matching techniques like ICP [19] can help to correct the odometry
error. The problem is that sparse data in outdoor environments and dynamic en-
tities make correspondence finding difficult. One importantdisadvantage of the
direct scan matching methods is that they do not consider thedynamics of the ve-
hicle. Indeed we have implemented several ICP variants [20] and found out that
scan matching results are unsatisfactory and often lead to unexpected trajectories
of vehicle. This is because matching only two consecutive scans may be very hard,
ambiguous or weakly constrained, especially in outdoor environment and when the
vehicle moves at high speeds.
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Fig. 4. Hit maps build directly from raw laser data collected from a vehicle moving along
a straight street: with vehicle localization using odometry (left); and using results of scan
matching (right). Note that the scan matching results are not affected by moving objects in
the street.

An alternative approach that can overcome these limitations consists in setting up
the matching problem as a maximum likelihood estimation. Inthis approach, given
an underlying vehicle dynamics constraint, the current scan position is corrected
by comparing with the local grid map constructed from all observations in the past
instead of only with one previous scan. By this way, we can reduce the ambiguity
and weak constraint especially in outdoor environment and when the vehicle moves
at high speed. Mathematically, we calculate a sequence of poses ˆx1, x̂2, ... and se-
quentially updated mapsM1,M2, ... by maximizing the marginal likelihood of the
t-th pose and map relative to the(t−1)-th pose and map:

x̂t = argmax
xt

{P(zt |xt ,Mt−1) .P(xt | x̂t−1,ut)} (7)

In the equation (7), the termP(zt |xt ,Mt−1) is the measurement model which is the
probability of the most recent measurementzt given the posext and the mapMt−1

constructed so far from observationsz1:t−1 at corresponding poses ˆx1:t−1 that were
already estimated in the past. The termP(xt | x̂t−1,ut) represents the motion model
which is the probability that the vehicle is at locationxt given that the vehicle was
previously at position ˆxt−1 and executed an actionut . The resulting pose ˆxt is then
used to generate a new mapMt according to (6):

Mt = Mt−1∪{x̂t ,zt} (8)

Now the question is how to solve the equation (7), but let us first describe the
motion model and the measurement model used.

For the motion model, we adopt the probabilistic velocity motion model similar to
that of [21]. The vehicle motionut is comprised of two components, the transla-
tional velocityvt and the yaw rateωt . Fig. 5 depicts the probability of a vehicle
being at locationxt given its previous locationxt−1 and controlut . This distribution
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Fig. 5. The probabilistic velocity motion modelP(xt |xt−1,ut) of the vehicle (left) and its
sampling version (right).

is obtained from the kinematic equations, assuming that vehicle motion is noisy
along its rotational and translational components.

For the measurement modelP(zt |xt ,Mt−1), mixture beam-based model is widely
used in the literature [22][23]. However, the model come at the expense of high
computation since it requires ray casting operation for each beam. This can be a
limitation for real time application if we want to estimate alarge amount of mea-
surements at the same time. To avoid ray casting, we propose an alternative model
that only considers end-points of the beams. Because it is likely that a beam hits an
obstacle at its end-point, we focus only on occupied cells inthe grid map. A voting
scheme is used to compute the probability of a scan measurement zt given the vehi-
cle posext and the mapMt−1 constructed so far. First, from the vehicle locationxt ,
individual measurementzk

t is projected into the coordinate space of the map. Call
hitk

t the grid cell corresponding to the projected end-point of each beamzk
t . If this

cell is occupied, a sum proportional to the occupancy value of the cell will be voted.
Then the final voted score represents the likelihood of the measurement. LetP(Mi

t )
denote the posterior probability of occupancy of the grid cell Mi estimated at time
t (following (6)), we can write the measurement model under the sum following:

P(zt |xt ,Mt−1) ∝
K

∑
k=1

{P(Mhitk
t

t−1) so thatMhitk
t

t−1 is occupied} (9)

The proposed method is just an approximation to the measurement model because
it does not take into account visibility constraints, but experimental evidences show
that it works well in practice. Furthermore, with a complexity of O(K), the compu-
tation can be done rapidly.

It remains to describe how we maximize (7) to find the correct posex̂t . Hill climbing
strategy in [24][23] can be used but may suffer from a local maximum. Exploiting
the fact that the measurement model can be computed very quickly, we perform an
extensive search over vehicle pose space. A sampling version of the motion model
(Fig. 5 right) is used to generate all possible posesxt given the previous posext−1

and the controlut . The resulting pose will be the pose at which the measurement
probability achieves a maximum value. Because of the inherent discretization of
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Fig. 6. An example of scan matching. From left to right: reference image; mapconstructed
so farMt−1 with previous vehicle locationxt−1; new laser measurementzt ; and matching
result is obtained by trading off the consistency of the measurement with the map and the
previous vehicle pose.

the grid, the sampling approach turns out to work very well. In practice, with a grid
map resolution of 20 cm, it is enough to generate about four orfive hundreds of
pose samples to obtain a good estimate of the vehicle pose with the measurement
likelihood that is nearly unimproved even with more samples. The total computa-
tional time needed for such a single scan matching is about 10ms on a low-end
PC. An example of scan matching result is shown in Fig. 6. The most likely vehicle
pose is obtained when the laser scan is aligned with the occupied parts of the map
and at the same time the vehicle dynamics constraint is satisfied.

Besides the computational effectiveness, one attraction ofour algorithm is that it
is not affected by dynamic entities in the environment (see Fig. 4 right). Since we
only consider occupied cells, spurious regions in the occupancy grid map with low
occupancy probability that might belong to dynamic objectsdo not contribute to the
sum (9). The voting scheme ensures that measurement likelihood reach a maximum
only when the laser scan is aligned with the static parts of the environment. To some
meaning, measurements from dynamic entities can be considered as outliers of the
alignment process. This property is very useful for moving object detection process
that will be described in the next section.

3.4 Local mapping

Because we do not need to build a global map nor deal with loop closing problem,
only one online map is maintained representing the local environment surrounding
of the vehicle. The size of the local map is chosen so that it should not contain loops
and the resolution is maintained at a reasonable level. Every time the vehicle arrives
near the map boundary, a new grid map is reinitialized. The pose of the new map
is computed according to the vehicle global pose and cells inside the intersection
area are copied from the old map.
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4 MOVING OBJECTS DETECTION

In the previous section, we represent how to obtain precise vehicle localization
and how to build local vehicle grid map from laser data. In this section we will
describe how to identify moving objects by using the previously constructed grid
map. Detected objects are then confirmed using radar data andtheir velocities are
estimated.

4.1 Using Occupancy Grid to detect Moving Objects

After a consistent local grid map of the vehicle is constructed, moving objects can
be detected when new laser measurements arrive by comparingwith the previously
constructed grid map. The principal idea is based on the inconsistencies between
observed free space and occupied space in the local map. If anobject is detected
on a location previously seen as free space, then it is a moving object. If an object
is observed on a location previously occupied then it probably is static. If an object
appears in a previously not observed location, then it can bestatic or dynamic and
we set the unknown status for the object in this case.

Another important clue which can help to decide whether an object is dynamic or
not is evidence about moving objects detected in the past. For example, if there
are many moving objects passing through an area then any object that appears in
that area should be recognized as a potential moving object.For this reason, in
addition to the local static mapM constructed as described in the previous section, a
local dynamic grid mapD is created to store information about previously detected
moving objects. The pose, size and resolution of the dynamicmap is the same as
those of the static map. Each dynamic grid cellDi store a valueα i indicating the
number of observations that a moving object has been passed by that cell. The
bigger value ofα i, the more probability that object seen atDi is moving.

From these remarks, our moving object detection process is carried out in two steps
as follows. The first step is to detect measurements that might belong to dynamic
objects. Here for simplicity, we will temporarily omit the time index. Given a new
laser scanz, the corrected vehicle location and the local static mapM and the dy-
namic mapD containing information about previously detected moving objects,
state of a single measurementzk is classified into one of three types following:

state(zk) =



















static if Mhitk
= occupied

dynamic if Mhitk
= f ree or Dhitk

> α

undecidedif Mhitk
= unknown

11



Fig. 7. Moving object detection example. See text for more details.

whereMhitk
andDhitk

are the corresponding cells of the static and dynamic map
respectively at the end-pointhitk of the beamzk, α is a pre-defined threshold.

The second step when measurements that might belong to dynamic objects are
determined, moving objects are then identified by clustering end-points of these
beams into separate groups, each group represents a single object. Two points are
considered as belonging to the same object if the distance between them is less than
a threshold of 0.2 m that is chosen empirically .

Fig. 7 illustrates the described steps in detecting moving objects. The leftmost im-
age depicts the situation where the vehicle is moving along astreet seeing a car
moving ahead and a motorbike moving in the opposite direction. The middle im-
age shows the local static map and the vehicle location with the current laser scan
drawn in red. Measurements which fall into free region in thestatic map are de-
tected as dynamic and are displayed in the rightmost image. After the clustering
step, two moving objects are identified (in green boxes) and correctly corresponds
to the car and the motorbike.

4.2 Fusion with radar

The general purpose of the data fusion is to provide a more reliable and more ac-
curate model than a single data would provide. After moving objects are identified
from laser data, we confirm the object detection results by fusioning with radar data
and estimate velocities of the detected objects.

With the radar sensors being used, a built-in preprocessingof the radar measure-
ments takes place, wherein reflections with a similar distance, relative velocity, and
amplitude are grouped together. The radar sensors return pre-filtered data as lists of
potential moving objects. The object lists of the two radarsare independent from
each other. Each object is provided with information about the location and the
Doppler velocity. For each moving object detected from laser data as described in
the previous section, a rectangular bounding box is calculated and the radar mea-
surements which lie within the box region are then assigned to corresponding ob-
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ject. The velocity of the detected moving object is estimated as the average of these
corresponding radar measurements.

Fig. 8 shows an example of how the fusion process takes place.Moving objects
detected by laser data are displayed in red with green bounding boxes. The targets
detected by two radar sensors are represented as small circles in different colors
along with corresponding velocities. We can see in the radarfield of view, two
objects detected by laser data are also seen by two radars so that they are confirmed
and their velocities are estimated. Radar measurements thatdo not correspond any
dynamic object and fall into other region of the grid are not considered. Since the
radar is setup with the field of view much smaller than the laser field of view (Fig.
2), the fusion process indeed did not help much to improve theoverall detection
results but we can see how detection results could be improved if more sensors
available.

Fig. 8. Moving object detected from laser data is confirmed by radar data.

5 MULTIPLE HYPOTHESIS TRACKING USING ADAPTIVE IMM

The aim of multi-object tracking is to estimate the number and the states of real
objects evolving in the environment by generating and maintaining during time a
set of tracks according to detected (observed) objects1 obtained at each step. For
convenience we calltrack a tracked object that is composed by a list of detected
objects. This involves a choice of filtering methods, but also data association meth-
ods and a maintenance of the list of objects currently present in the environment.
The most known techniques are the the Global Nearest Neigbour (GNN) combined
with filtering, Joint Probabilistic Data Association Filter (JPDAF) and the Multi-
ple Hypothesis Tracking (MHT) [10][21]. In the conventional GNN only the most
likely assignment is considered at each step, allowing onlyto associate at most

1 usually the termobservationis used in such a case but as in our work raw sensors ob-
servations are treated to obtaindetections, the termdetected objectwill be use for more
clarity

13



�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������

�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������

Tracking

Possible 

Tracks−Objects
Association

Pruned Track Trees

Predictionsm−Best Hypotheses

Association
Gating

FilteringTrack Managment

Track to Objects

To Users

Objects List

Fig. 9. Architecture of multi-object tracking system

one detected object to one track. The JPDAF method permits toassign several de-
tected objects to one track by weighted probabilistic sum. Nevertheless, it works
with a fixed number of tracks and increase the track state uncertainty since several
objects with different positions can update on unique track. In MHT alternative as-
sociations hypotheses are build over time. In conflict situations, instead of taking
a decision (GNN) or combining hypotheses (JPDAF), hypotheses are propagated
into the future in anticipation that it will resolve the association uncertainty.

The basic principle of MHT is to generate and update a set of association hypothe-
ses during process. An hypothesis corresponds to a specific probable assignment
of detected objects with tracks. By maintaining and updatingseveral hypotheses,
none irreversible association decisions are made and ambiguous cases are solved
in further steps. Reid introduces first a complete algorithm given a systematic way
in which multiple data association hypotheses can be formedand evaluated for the
problem of multiple target tracking [25]. It permits to systematically generate and
evaluate hypotheses by building track trees. For these reasons, we based our MHT
on this efficient algorithm.

Regarding tracking techniques, Kalman filters [11] or particle filters [12] are gener-
ally used. These filters require the definition of a specific dynamic model of tracked
objects (ie, a motion model). However, defining a suitable motion model is a real
difficulty. To deal with this problem, Interacting MultipleModels [13][26] have
been successfully applied in several applications.

The IMM approach overcomes the difficulty due to motion uncertainty by using
more than one motion model. The principle is to assume a set ofmodels as possible
candidates of the true displacement model of the object at one time. To do so,
a bank of elemental filters is ran at each time, each corresponding to a specific
motion model, and the final state estimation is obtained by merging the results of
all elemental filters according to the distribution probability over the set of motion
models. By this way different motion models are taken into account during filtering
process. In previous works [27] [14], we have developed a fast method to adapt
on-line IMM according to trajectories of detected pedestrian and so we obtain a
suitable and robust tracker. In this work we extent this method in order to track
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dynamic objects in the vehicle environment.

As shown in Fig. 9, our multi-object tracking method is composed of four different
parts:

• The first one is the gating. In this part, taking as input predictions from previ-
ous computed tracks, we compute the set of new detected objects which can be
associated to each track.
• In the second part, using the result of the gating, we performobject to tracks

association and generate association hypotheses, each track corresponding to a
previously known moving object. Output is compoed of the computed set of
association hypotheses.
• In the third part called track management, tracks are confirmed, deleted or cre-

ated according to the association results and final track trees are output.
• In the last part corresponding to the filtering step, estimates are computed for

’surviving’ tracks and predictions are performed to be usedthe next step of the
algorithm. In this part we use an adaptive method based on Interacting Multiple
Models (IMM).

5.1 Gating

In this part, taking as input predictions from previous computed tracks and newly
detected objects, a gating is performed. It consists in, according to an arbitrary dis-
tance function, determine the detected objects which can beassociated with tracks.
Also during this stage, clustering is performed in order to reduce the number of
association hypotheses. It consists in making clusters of tracks which share at least
one detected object. In the next stage, association can be performed independently
for each cluster decomposing a large problem in smaller problems which induce
generation of less hypotheses.

T1’s gate T2’s gate

O1
O2

O3

T1
T2

Fig. 10. Example of association problem

If we take as an example the situation depict by the Fig. 10, inthis stage one set is
computed asT1 andT2 share objectO2. Also according to gates, objectsO1 andO2

can be assigned toT1 and objectsO2 andO3 to T3.
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5.2 Association

In this part, taking as input clusters of tracks and detectedobjects validated by the
gating stage, association hypotheses are evaluated. By considering likelihood of
objects with tracks, new track apparition probability and non-detection probability,
an association matrix is formed.

Let beL(oi , t j) the function giving the likelihood of objecti with track j, PNT the
new track apparition probability andPND the non detection probability. Alway tak-
ing as an example the situation in the Fig. 10, the association matrix is written:

















L(o1, t1) −∞ PNT

L(o2, t1) L(o2, t2) PNT

−∞ L(o3, t2) PNT

PND PND −∞

















Thus a possible association hypothesis corresponds to a valid assignation in the
matrix of detected objects with tracksi.e one unique element in each row and each
column is chosen to compose the assignation. In order to reduce the number of
hypothesis, only the m-best association hypotheses are considered as done in Cox
work [28] using this matrix. This m-best implementation of the Reid’s algorithm
permits to reduce the number of hypotheses and thus to control the trees’ growth
in width. So for each cluster (each set of tracks sharing at least one detected ob-
jects) the m-best assignment in the association matrix are computed using the Murty
method [29] which computes the m-best assignations in the matrix and by this way
be obtain the m-best Hypotheses.

5.3 Track management

In this third stage, using the m-Best Hypotheses resulting ofthe association stage,
the set of track trees, is maintainedi.e tracks are confirmed, deleted or created.
The track management consists in only kept the branches withleafs attached to the
m-best hypothesis and prune all other branches. New tracks are created if a new
track creation hypothesis appears in the m-best hypotheses. A new created track is
confirmed if it is updated by detected objects after a fixed number of algorithm steps
(three in our implementation). Thus spurious measurement which can be detected
as objects in the first step of our method are never confirmed.

If a non-detection hypothesis appears and so to deal with non-detection cases (which
can appear for instance when an object is occulted by an otherone, tracks without
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associated detected objects are updated according to theirlast associated objects
and next filtering stage becomes a simple prediction. But if a track is not updated
by a detected object for a given number of steps, it is deleted.

Furthermore, to reduce the continuously tracks’ growth, another pruning is per-
formed. Typically trees’ growth is controlled in length by the so called N-Scans
pruning technique which consists in only kept theN last scans in the trees. By this
way, the maximum length of tracks trees isN and it permits to apply the MHT
algorithm on realistic problems.

5.4 Adaptive Filtering using Interacting Multiple Models

Predictions

Pruned Track Trees

Filtering

To Users

Most Probable trajectories

IMM Filter

TPM adaptation

Trajectories

Adapted TPM

Estimated Track Trees

Fig. 11. Principle of our adaptive filtering program

As the quality of gating relies directly on the quality of filtering and especially the
prediction step, we have chosen Interacting Multiple Models (IMM) [13][26] to
deal with motion uncertainties in this filtering part.

Besides, we developed an efficient method in which critical parameter of the IMM
is on-line adapted [27][14] according to the most probable trajectories formed by
tracks. Thus as Fig. 11 shows our filtering stage is composed of three parts : an
IMM filtering part, a part in which most probable trajectories are computed and a
last part in which we adapt the IMM filter.

Principle:

As explained, the IMM approach overcomes the difficulty due to motion uncer-
tainty by using a set ofM elemental filters at each time, each corresponding to a
specific motion model, and the final state estimation is obtained by merging the
results of all filters according to the distribution probability P(µ) over the set of
motion models. Also, the probability the object changes of displacement model
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is encoded in a transition probability matrix(TPM) which gives the distribution
P( µt | µt−1), i.e the transition between models which is assumed Markovian.
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P(X)

Fig. 12. Principle of IMM

One cycle of an IMM is composed of tree steps (Fig. 12): A step in which filter
execution is done andP(µt) is updated, a fusion step allowing to compute estimate
fusion and a reinitialization step.

An unique filter give us the distribution at timet over object statext knowing the
current detected objectzt and previous estimationP(xt |zt). Also, P(µt) is updated
according toP(µt |µt−1) corresponding to the TPM, it gives the transition probabil-
ity between modes and so is defined as a matrix,P(µt−1) is the previous distribution
over models and the likelihood of the current detected object with each filter.

Thus as we use a bank of filters and we want to obtain an estimatefusion P(Xt),
according to all filters outputs. The estimate fusion is obtained by:

P(Xt) =
M

∑
m=1

P( [µt = m]) Pm(xt |zt) (10)

Also during the computation process, the new distribution probability over models
P(µt) is computed and store for each hypothesis.

To obtain new predictions, filters are reinitialized according filters outputs and in
each filter the corresponding dynamic model is applied. By this way, we obtainM
predictions per leaf which will be use in the gating stage.

Definition of our IMM:

Nevertheless, to apply IMM on real applications a number of critical parameters
have to be defined, for instance the set of motion models and the transition proba-
bility matrix(TPM). To cope with this design step which cannot match the reality,
we propose an efficient method in which the TPM is adapted online.
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Fig. 13. The sixteen chosen motion models in the vehicle’s frame

The first step to apply our method is to define an appropriate IMM and, in particular,
models which compose it. In specific applications, different objects such as cars
or motorcycles can move in any directions and can often change theirs motions.
Thus in our aim we choose various IMM’s models to cover the setof possible
directions and velocities. In previous work for one pedestrian tracking we focused
only on directions but here we focus on a range of velocities while keeping a set
of directions to cope with directions’ transition in vehicles’ behavior. As each filter
corresponds to a specific motion model, we have to define each motion model.
So, assuming we have different possible velocities defined according to the vehicle
velocity and eight directions in the set of possible directions an object can follow,
we obtain sixteen motion models (Fig. 13).

Hence, according to the definition of these sixteen motion models, our IMM is
composed of sixteen filters. Kalman filters are chosen for implementation as they
allow fast computation.

We must usually also define the TPM. As we develop a method which computes
the TPM online, we do not need specific informations concerning the TPM and no
modeling are needed. So the TPM is initially chosen to be uniform. As eight modes
are defined, the TPM is an uniform square 16×16 matrix. In the next part of the
text, we will see how the TPM is on-line adapted.

5.4.1 Computation of the most probable trajectories

Once estimates are performed in all track trees leafs, the most probable trajectory
is computed for each track. Basically, it consists in taking the branch having the
maximum probability (computed during filtering) to obtain one unique hypothesis
for one given track tree. This step permits to give users morereadability on what
is happening during tracking process and also permits us to adapt on-line the IMM
parameter according to these trajectories.
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5.4.2 Adaptation of the IMM

To adapt the TPM in our specific situationi.e tracking detected objects, most prob-
able trajectories are considered. Taking as input the set oftrajectories computed
during filtering process, we will adapt one-line the TPM of the IMM filter in order
to obtain a better transition between motion models close tothe real behavior of
tracked objects.

The principle is the following. For a given numberN of trajectories we build se-
quences of associated models probabilities.And then, using this models probabili-
ties, the TPM is adapted and reused in the IMM filters for the next estimations.In
more details, algorithm 1, given in pseudo-code, is the algorithm defined to com-
pute one adaptation of the TPM.

Algorithm 1 Adaptive IMM Algorithm
1: Adaptation of TPM(T0, ...,TN)
2: n← 0
3: repeat
4: Sn← [ ]
5: /* Storeµk,...µk′ from Tn the most probablenth trajectory */
6: for all Ob ject pose xk in Tn do
7: {µk}← Tn(k)
8: Sn← Sn∪ [µk]
9: end for

10: /* Compute the most probable model sequence MPS */
11: MPS←Viterby(Sn)
12: /* Quantification of model transitions */
13: for all Couple( MPSk, MPSk+1) in MPSdo
14: i←MPSk

15: j ←MPSk+1
16: Fi j = Fi j + 1
17: end for
18: n← n+1
19: until n = N
20: /* Update of TPM in IMM */
21: TPM← Normalization(F)
22: ReturnTPM in IMM

An adaptation of the TPM is done after a given numberN of trajectories obtained
from tracks, to update TPM using a window on trajectories (cf. loop line 3-19 of
algorithm 1). Moreover trajectories are processed one by one in three steps:

1- Models’ probabilities are collected by travel through the computed most proba-
ble sequence

2- Most probable models’ sequence is computed
3- Most probable models’ transitions are quantified
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Collection of models’ probabilities: For each part of a given most probable tra-
jectory computed in last stages of the filtering process, we collect the distribution
over models(lines 7). Thus a model probabilities’ sequenceSn obtained in such a
way and is stored to be processed (line 8).

Computation of the most probable model sequence:In a next step, the most
probable models’ sequence ofSn is computed (line 11). More precisely, considering
the actual TPM and a setSn = µ0...µK of model probabilities through time 0 to
K, we aim to obtain the most probable models’ sequence knowingthe estimates
computed by the IMM:

Max P(µ0 µ1...µk | x0 x1... xK) (11)

We just need to obtain the maximum of the distributionP(µ1 µ2...µK | x0 x1... xK),
thus the inference is made using the Viterbi Data Algorithm [30]. As complexity
of this algorithm is inO(KM2), we efficiently obtain the most probable models’
sequence.

Quantification of most probable model transitions: Using this most probable
models’ sequence, the number of transitions from one model to an other is quan-
tified (lines 13 to 17). To do so a frequencies matrix is considered. This matrix
models the number of transitions which have occurred from one model to an other.
We noteF this matrix and soFi j gives the number of transitions which has occurred
from modeli to j. Using the most probable models’ sequence corresponding toa
specific trajectory and computed by the Viterbi algorithm, the update ofF is di-
rectly obtained by counting transitions in this sequence. Furthermore,F is kept in
memory to be used in next adaptation and before the first update all its elements
are set to 1.

Finally, whenN trajectories have been treated, the new TPM is obtained by nor-
malization of the frequencies matrixF . Thus the TPM is re-estimated using all
model sequencesS1...SN and is reused in the IMM for next executions (lines 21
and 22). In practice, before the first run, the TPM is chosen uniform (according to
F initialization) as we do not want to introducea priori data.

By this way an on-line adaptation of the TPM is obtained. Thus,the effectiveness
of filtering part of our MHT is improved since the prediction quality is enhanced
by our method. And so, the quality of the whole MHT is improved.

Example of adaptation result:

Following the numeration of the different motion models defined in Fig. 13, the
16×16 frequencies matrix are shown on Fig. 14, Fig. 15 and Fig. 16at three dif-
ferent steps of the execution process. We can see that after five trajectories some
transitions appear to be more frequent than other (Fig. 14).Also, after twenty five
trajectories (Fig. 15) the continuous adaptation makes appear clearly different be-
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Fig. 14. Frequencies matrix obtained after five trajectories

Fig. 15. Frequencies matrix obtained after twenty five trajectories

Fig. 16. Frequencies matrix obtained after fifty trajectories

haviors, especially transitions between models oriented to the front and the back of
the vehicle (models number from two to eight and from nine to fifteen)2 . After a
number of trajectories, an efficient model of the real objects’ behaviors is obtained.
Without our automatic and one-line adaptation it would be difficult to model such
behaviorsa priori and impossible to continuously model the real behavior of ob-
jects during one or several processes. Furthermore, obtaina TPM which model the
real objects’ motion improve the quality of the IMM filteringand thus the quality
of the whole filtering process.

2 According to nonholonomic constraints we cannot obtain direct transitions from the front
model to the back model for instance but as shown in the results transitions between adja-
cent models occur
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6 EXPERIMENTAL RESULTS

Our proposed algorithms for objects detection and trackingis tested on datasets col-
lected with the DaimlerChrysler demonstrator car. The vehicle was driven through
different kinds of scenarios such as city streets, country roads and highways with a
maximum speed of 120 kph. In our implementation, the width and height of local
grid map are set to 160 m and 200 m respectively, and the grid resolution is set to
20 cm. Every time the vehicle arrives at 40 m from the grid border, a new grid map
is created. The object detection is run for every new laser scan and the tracking
process is updated according to the detection results.

Fig. 17 shows some snapshots of the moving object detection and tracking process
in action. The images in the first row represent online maps and objects moving
in the vicinity of the vehicle are detected and tracked. The current vehicle location
is represented by blue box along with its purple trajectories after corrected from
the odometry. The red points are current laser measurementsthat are identified as
belonging to dynamic objects. Green boxes indicate detected and tracked moving
objects with corresponding tracks displayed in different colors. Information on es-
timated velocities is displayed next to detected objects. The second row are images
for visual references to corresponding situations.

Fig. 17. Experimental results show that our algorithm can successfully perform both SLAM
and DATMO in real time for different environments

In the figure, the leftmost column depicts a scenario where the demonstrator car is
moving at a very high speed of about 100 kph while a car moving in the same
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direction in front of it is detected and tracked. On the rightmost is a situation
where the demonstrator car is moving at 50 kph on a country road. A car mov-
ing ahead and two other cars in the opposite direction are allrecognized. Note
that the two cars on the left lane are only observed during a very short period
of time but both are detected and tracked successfully. The third situation in the
middle, the demonstrator is moving quite slowly at about 20 kph in a crowded
city street. Our system is able to detect and track both the other vehicles and the
motorbike surrounding. In all three cases, precise trajectories of the demonstra-
tor are achieved and local maps around the vehicle are constructed consistently.
In our implementation, the computational time required to perform both SLAM
and DATMO for each scan is about 20− 30 ms on a 1.86GHz, 1Gb RAM lap-
top running Linux. This confirms that our algorithm is absolutely able to run syn-
chronously with data cycle in real time. More results and videos can be found at
http://emotion.inrialpes.fr/ ˜ tdvu/videos/ .

Quantitative results

Data Type Real Objects Non-detections False Alarms Total Tracks

City 57 7% 3% 88

Road 74 11% 3% 109

Highway 5 7% 1.5% 47

The table above shows quantitative results obtained using our method on three se-
quences of different types of environments. The first columnare different types of
scenario. The second column shows the numbers of real objects which entered the
vehicle’s sensors range which is manually counted. The third number corresponds
to the numbers of steps in our algorithm in which one object isnot detected but
always tracked (non-detection cases). The fourth column are the numbers of false
alarmsi.e when our detector (in some cases because of vehicle sensors noise) de-
tected moving objects but our tracker recognized these detection. In the last column
are the total numbers of tracks computed during the given sequence.

The results show that during three sequences, most part of object appearances are
tracked. We can note that the number of tracks remains more important than the
number of real objects. It is due to objects which moves across or close to the sen-
sors’ range boundary. Indeed, close to the sensors’ range boundary, laser sensor
loose precision and so the detection stage become less efficient. Then if an ob-
ject reappears in the sensor range it is so considered as a newone by our tracker.
Also, even if an important number of non-detections and false alarms appears, the
tracking part permits to cope with such problems especiallysince the quality of
prediction step is greatly improved by our adaptive IMM. Ourtwo stage approach
permits to cope with sensors noise where an efficient detection is reinforced by a
robust tracking of objects.
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7 CONCLUSIONS AND FUTURE WORKS

We have presented an approach to accomplish local mapping with detection and
tracking moving objects. Experimental results have shown that our system can suc-
cessfully perform a real time mapping and moving object tracking from a vehicle
at high speeds in different dynamic outdoor scenarios. Thisis done based on a
fast scan matching algorithm that allows estimating precise vehicle locations and
building a consistent map surrounding of the vehicle. Aftera consistent local ve-
hicle map is build, moving objects are detected and are tracked reliably using an
adaptive Interacting Multiple Models filter coupled with anMultiple Hypothesis
tracker.

Future works include incorporating object models of several predefined classes
with specific shapes and sizes that give a more meaningful representation of de-
tected objects instead of only sets of contour points as in our current work. In
addition, algorithms of road detection and road type classification based on con-
structed grid map are being considered. The motivation is that road detection can
help object detection step to filtering out noisy and irrelevant data off-the-road and
focus more on road-likely regions. In all, the fusion of a vehicle map, road de-
tection, moving object classification and tracking modulescertainly will enable a
better interpretation of driving situations.
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