
Grid based fusion of offboard cameras
Manuel Yguel, Olivier Aycard, David Raulo

GRAVIR-IMAG & INRIA RA
655 avenue de l’Europe - Montbonnot
38334 Saint Ismier Cedex - FRANCE
Email : Firstname.Lastname@imag.fr

Abstract— The goal of a perception system is to built an
environment model. This model could be a list of features and
objects present in the environment but could also be a grid (ie, a
discretization of the environment in cells), where each cell gives
the probability that the corresponding part of the environment is
occupied or not. In this paper, we describe the perception system,
based on a grid environment model, developped in the frame of
the French project PUVAME. This system consists of several
offboard cameras observing an intersection to detect objects (ie,
pedestrian, cyclists and vehicules...). We present a generic and
new method to design a sensor model for offboard camera where
each of the video camera feed is processed independantly by a
dedicated detector. Moreover, to add tolerance to miss detections
and false alarms, we model the failure of the sensor. We also
detail how to build an occupancy grid, fusionning the information
from the different cameras. Experimental results showing that
our approach is well suited to build an environment model are
provided.
Keywords: perception, sensor data fusion, sensor model,
occupancy grid

I. I NTRODUCTION

In France, about 33% of roads victims are VRU1. In its
3rd framework, the french PREDIT2 includes VRU Safety.
The PUVAME project [1] was created to generate solutions
to avoid collisions between VRU and Bus in urban traffic. An
accident analysis has shown that an important part of these
collisions take place at intersection and bus stop. To reduce
accidents, a first requirement of the PUVAME project is to
improve the perception of the bus driver at these particular
places. This objective will be achieved using a combination
of offboard cameras, observing intersections or bus stops, to
detect VRU present at intersection or bus stop, as well as
onboard sensors for localisation of the bus.

In this paper, we detail the solution we developped to fusion
the information about the position of each VRU given by each
offboard camera. The process of fusion is fundamental:

• As the measurement of every sensor always keeps a
certain amount of uncertainty on the VRU position, it
allows to use data coming from different sensors in order
to compute a better estimation of the position of each
object [12];

• It also increases the field of view of the whole perception
system;

• Moreover, it is useful to decrease the level of false alarms.

1Vulnerable Road Users
2Programme de Recherche et d’Innovation dans les Transports Terrestres

In many applications, to perform fusion, a geometric point
of view is used: a set of geometric features is first defined, a
model of uncertainty associated to each feature is also needed
and a way to fusion features has also to be provided. For
instance, [2] used infrared camera and radar to detect and
track road obstacle. Each sensor returns a point as observations
of the position of each obstacle present in the environment.
The uncertainty associated to this position is modelized by
a gaussian and when two observations corresponds to the
same obstacle a fusion of the two corresponding gaussian
is performed to estimate the position of the object. In [4],
a generalized feature model for the multi sensor case has
been developped. This generalized feature model is based on
the assumption that any entity in the world can be detected
and recognized by means of features. Features are assumed to
be dedicated parts of the entity with certain spatio-temporal
coordinates in the coordinate system of the entity. Actually,
the major drawback of the geometric approach is the number
of different geometric features (points, segments, polygons, el-
lipses, etc) that the perception system must handle. Moreover,
this approach is unable to take into account a new objet that
appears in the environment and that could not be defined using
the predefined set of features.

An other way to model the environment has been introduced
by Elfes and Moravec at the end of the 1980s. This new frame-
work to multi-sensor fusion is called Occupancy Grids (OG).
An occupancy grid is a stochastic tesselated representation of
spatial information that maintains probabilistic estimates of
the occupancy state of each cell in a lattice [5]. The main
advantage of this approach is the ability to integrate several
sensors in the same framework taking the inherent uncertainty
of each sensor reading into account, in opposite to the Ge-
ometric Paradigm whose method is to categorize the world
features into a set of geometric primitives. The alternative
that OGs offer is a regular sampling of the space occupancy,
that is a very generic system of space representation when no
knowledge about the shapes of the environment is available.
The occupancy grid paradigm has been applied successfully
in many different ways. For example, some systems use occu-
pancy grids to plan collision-free paths [3] or for path planning
and navigation [13] [7]. Therefore, most of actual mapping
systems resort to OG for modelling the environment [13], [8].
And all the more so as with appropriate sensor models OG
provide a rigorous way to manage occlusions in the sensor
field of view. On the contrary of a feature based environment



model, the only requirement for an OG building is a bayesian
sensor model for each cell of the grid and each sensor. This
sensor model is the description of the probabilistic relation that
links sensor measurement to space state, that OG necessitates
to make the sensor integration. Fortunately it is possible for
a wide class of sensors to factorise this amount of data by
taking advantage of the characteristics of the sensor. Regarding
telemetric sensors, sensor model for sonar [14] and laser
range finders [13] have been defined and used to map the
environment. 3D occupancy grids have been built using stereo
vision [10] and a set of camera [6]. In these papers, the sensor
model are defined using the result of a preprocessing of the
images.

In this paper, we present a generic and new method to
design a sensor model for a different kind of sensors: a set
of offboard cameras where each of the video camera feed is
processed independantly by a dedicated detector. The role of
the detectors is to convert each incoming video frame to a set
of bounding rectangles, one by target detected in the image
plane. The set of rectangles detected at a given time constitutes
the observation used to build the occupancy grid. This type of
sensor model has never been defined before, and moreover we
show that our approach is generic and could easily be adapted
to any kind of visual detector. Moreover, to add tolerance to
miss detections and false alarms, we model the failure of the
sensor.

In next section, we present the experimental platform used
to evaluate the solution we propose. Section III defines the
occupancy grid basic concepts. In section IV and V, we
detail how the sensor model of offboard cameras is built.
Experimental results are reported in section VI. We give some
conclusions and perspectives in section VII.

II. PARKNAV PLATFORM

The experimental setup used to evaluate our fusion scheme
is an evolution of the ParkView platform, initially developped
for a French national project designed for the Interpretation of
Complex Dynamic Scenes and Reactive Motion Planning.
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Fig. 1. The ParkView platform hardware

The ParkView platform is composed of a set of six off-board
analog cameras, installed in a car-park setup such as their field-
of-view partially overlap (see figure 2), and three Linux(tm)
workstations in charge of the data processing, connected by a
standard Local Area Network (figure 1).

(a) (b)

(c) “left1” (d) “left0”

(e) “right0” (f) “right1”

Fig. 2. (a) Location of the cameras on the parking; (b) Field-of-view of the
cameras projected on the ground; (c) to (d) View from four of the cameras

The workstations are running a specifically developped
client-server software composed of three main parts, called
the map server, themap clientsand theconnectors(figure 3).

The map serverprocesses all the incoming observations,
provided by the different clients, in order to maintain a global
high-level representation of the environment; this is where the
data fusion occur. A single instance of the server is running.

Themap clientsconnect to the server and provide the users
with a graphical representation of the environment (Fig 7(a));
they can also process this data further and perform application-
dependant tasks. For example, in a driving assistance applica-
tion, the vehicle on-board computer will be running such a
client specialized in estimating the collision risk.

Theconnectorsare feeded with the raw sensor-data, perform
the pre-processing, and send the resultingobservationsto the
map server. Each of the computer connected with one or
several sensors is running such aconnector. For the application
described here, all data preprocessing basically consist in
detecting pedestrians. Therefore, the video stream of each
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Fig. 3. The ParkView platform software oranization

camera is processed independantly by a dedicated detector.
The role of the detectors is to convert each incoming video
frame to a set of bounding rectangles, one by target detected
in the image plane. The set of rectangles detected at a given
time constitutes the detector observation, and is sent to the
map server.

Since the fusion system operates in a fixed coordinate
system, distinct from each of the camera’s local systems, a co-
ordinate transformation must be performed. For this purpose,
each of the cameras has been calibrated beforehand. The result
of this calibration consists in a set of parameters:

• the intrinsic parameters contain the information about the
camera optics and CCD sensor: the focal length and focal
axis, the distorsion parameters,

• the extrinsic parameters consist of the homography ma-
trix: this is the 3x3 homogenous matrix which transform
the coordinates of an image point to the ground coordi-
nate system.

In such a multi-sensor system, special care must be taken of
proper timestamping and synchronization of the observations.
This is especially true in a networked environment, where the
standard TCP/IP protocol would incur its own latencies.

The ParkView platform achieves the desired effect by using
a specialized transfer protocol, building on the low-latency
properties of UDP while guaranteeing in-order, synchronised
delivery of the sensor observations to the server.

III. O CCUPANCY GRID

A. Definition

Elfes and Moravec have introduced at the end of the
1980s a new framework to multi-sensor fusion called
Occupancy Grids(OG). An occupancy grid is a stochastic
tesselated representation of spatial information that maintains
probabilistic estimates of the occupancy state of each cell in
a lattice [5], (Fig.4). It means that space is divided into cells
in which is stored the information about the possibility that
an obstacle lies in the cell or not. For each cell, observations
can be made to modify the cell state. The observations come

Fig. 4. Occupancy grid obtained from a laser range-finder.

from sensors and the heart of the modelling problem is to
define how each sensor measure modify the cell state.

1) Mathematical Framework:we introduce our framework
and notation, deriving the update equations of a cell of the
grid at each sensor measurement.

a) Probabilistic variable definitions:

•
−→
Z = (Z1, . . . , Zs) a vector ofs random variables, one
variable for each sensor. We consider that each sensor
i can return measurements from a setZi plus a special
event “nothing measured” which means that the entire
scanned region is free.

• Ex ∈ E ≡ {occ, emp}. Ex is the state of the binx either
occupied (”occ”) or empty (”emp”), wherex ∈ X .
X is the set of indexes of all the cells in the monitored
area.

For a certain variableV we will note in capital case the
variable, in normal casev one of its realisation, and we will
note P (v) for P ([V = v]) the probability of a realisation of
the variable.

b) Joint probabilistic distribution: the lattice of cells is
a type of markov field and many assumptions could be made
about the dependencies between cells and especially adjacent
cells in the lattice [9]. In this article we will explain sensor
models for independant cells i.e. without any dependencies,
which is a strong hypothesis but very efficient in practice since
any calculus could be made for each cell apart. It leads to the
following expression of a joint distribution for each cell.

P (Ex,
−→
Z ) = P (Ex)

s∏
i=1

P (Zi|Ex) (1)

Given a vector of sensor measurements−→z = (z1, . . . , zs)
we apply the bayes rule to derive the probability of cellx to
be occupied:

P (ex|−→z ) =
P (ex)

∏s
i=1 P (zi|ex)

P (occ)
∏s

i=1 P (zi|occ) + P (emp)
∏s

i=1 P (zi|emp)
(2)



For each sensori, the two conditional distributions
P (Zi|occ) and P (Zi|emp) must be specified. That what is
called the sensor modeldefinition.

B. Sensor model

The definition of a bayesian sensor model is: the spec-
ification of a probability distribution over all the possible
measurements of the sensor for each state of the cell: occupied
and empty. What is very interesting with this definition is that
it is purely functionnal, and so there are a lot of possiblities to
acquire such a model. One can use sensor characteristics given
by the sensor manufacturer or physical equations and it is
also theoretically possible to learn the probabilistic distribution
function with examples. We underline again that what is
needed in occupancy grids design is a sensor model for each
cell of the grid. Moreover it is possible for a wide class of
sensors to factorise the amount of data of a sensor model
per cell by taking advantage of the geometric symetries of
the sensor and that is what we present in the next section
for modelling the output of a video detector. This modelling
is called sensor analysis and is particular for each sensor,
moreover there is a part of this modelling: the fault model
which follows the same design for each sensor.

1) Fault modelling: Thus, for each cellx the function to
define is:P (Zi|Ex), that is the conditional probability function
of a sensor measurement knowing a cell state. It is possible to
add a confidence model for each sensor so that it is possible to
deal with the information about the amount of errors produced
by a sensor. The principle is to consider a new variable:

• Di ∈ D ≡ {on, off}. Di is the state of the measurement,
either correct (”on”) or wrong (”off”).

Now, the joint distribution to define is:

P (Ex,
−→
Z ,

−→
D) = P (Ex)

s∏
i=1

P (Fi)P (Zi|Ex, Di) (3)

that is defining P (Di) and defining P (Zi|Ex, off)
and P (Zi|Ex, on). Defining P (Di) corresponds to define
P ([Di = off]) which is simply the probability that the ith
sensor produced a wrong measurement.P (Di|Ex) is assign to
P (Di|Ex, on) because it models the correct behaviour of the
sensor. ForP (Di|Ex, off), without any kind of information, a
non-informative distribution which assign the same probability
to each sensor measurement, is chosen for the two possible
states,ex, of the cell.
If there is no information about the current behaviour of the
sensor, the used distribution is just the marginalization over
all the possible state of each measurement:

P (Ex,
−→
Z ) = P (Ex)

s∏
i=1

∑
D

P (Di)P (Zi|Ex, Di) (4)

This kind of transformation of the sensor model adds a
certain inertia related to the probability of wrong measurement.
It means that a good sensor measurement must be seen1

P (on)
times to be considered by the system as relevant as a sensor

measurement without error model. This inertia is the price for
the robustness added by the fault modelling.

C. Building sensor models

In the two following sections we describe how building
sensor models for a high level input, such as video camera
motion detector output. The problem is that motion detectors
give information in the image space and that we search to have
knowledge in the ground plan. Thus suppose that the detector
returns at mostn bounding boxes, mainly described by the
pair of two points, the space of the possibles input values is
[1;M ]4n with an image ofM ×M pixels. Also without any
simplification the problem is to build a probability distribution
over a space ofM4n, for two reasonable values:M = 256
pixels andn = 20 the size is about10192. So this problem
must be converted into a more practical one. We propose
there two different sensor models that are suitable for different
purposes, but which underline the genericity of the occupancy
grid approach. In both of the models we search first to segment
the ground plan in three types of region: occupied, occulted
and free zones using the bounding boxes informations. Then
we introduce an uncertainty management to deal with the
position errors in the detector. Finally, we explain how to
convert this information into probability distributions and how
to add fault model, controled by the quality estimation of the
sensor output.

IV. SENSOR MODEL OF OFFBOARD CAMERA WITH

VISIBILITY OF THE GROUND-OBJECT CONTACT POINTS

(a) (b)

(c) (d)

Fig. 5. (a) An image of a moving object acquired by one of the offboard
video cameras and the associated bounding boxe found by the detector. (b)
The occulted zone as the intersection of the viewing cone associated with the
bounding boxe and the ground plan. (c) The associated ground image produce
by the system. (d) Ground image after gaussian convolution with a support
size of7 pixels.



A. Image of the ground occupation

a) One video camera, one bounding box:the inputs
of this environment modelling are output of video camera
detectors that give bounding boxes of detected moving objects.
A video camera only sees the visible surface of the objects in
its field of view. Thus we have to draw on the ground the
occupied, occluded and free zones. We make the following
hypothesis:

1) the ground is a plan of which an equation is known.
2) all the obstacles stand on the ground: such as car, by-

cicles and non jumping pedestrians. This is statistically
not a strong hypothesis in non flying objects tracking.

3) the part of the obstacles that is visible for the camera
has an edge adjacent to the ground. This hypothesis is
stronger because some times just a part of the obstacle is
visible and the other part, which could be the bottom of
the obstacle such as the legs for a pedestrian is occluded.
But the higher are the video camera, the more true this
hypothesis is, and in the case of roof camera with a field
of view oriented toward the ground floor it is totally true
when the second hypothesis holds.

4) all the surface of the returned bounding boxes is con-
sidered to hide the back of the scene.

According to hypothesis (2) and (3) the returned bounding box
have a part adjacent to the ground. And this part is occupied
by the obstacle. And according to hypothesis (1) and (4) the
occluded zone by a bounding box is the projection of the
bounding box to the ground according to the camera projection
matrix.
That leads to the drawing of the ground occupation image
with one bounding box. First we calculate the projection of
the bounding box to the ground and we mark this area as
occluded. It is possible because, the extrinsec parameters of
the video camera have been calibrated before and the ground
plan identified. Thus the projection of the bounding box is just
the intersection of the cone of view defined by the bounding
box with the ground plan (Fig. 5(b)). Second we calculate the
part of the contour of the projected bounding box which is
the closest to the video camera. We draw this contour with a
certain width and mark it as an occupied area. We draw the
rest as free (Fig. 5(c)).

b) One video camera, several bounding boxes:in the
case of several bounding boxes, the projection of one can
overlap the projection of an other. So that we have to handle
carrefully the order of area drawing such as no occupied area
will be marked as occluded or free when it was marked as
occupied before. So we define three values:{0; 0.5; 1} for
free,occluded and occupied respectively. First we paint all the
ground in free. Then we draw each bounding box with its
occluded and occupied area and for each pixel the new value
is just set to the max of the precedent value and the measured
value.

B. Position uncertainty

To handle position uncertainty due to video camera vibra-
tion, noise in the video detector, non perfect synchronisation

of all the sensor measurements or the communication lattency
we just make a convolution of the ground image obtained in
the precedent step, with a gaussian 2D-kernel. The variances
of these kernels are important parameter and in fact it suits
the worst of the precedent sources of position uncertainties,
Fig. 5(d).

C. Building the two maps of probabilities:P (Z|Ex)

For each bin the precedent step provide a floating number
z ∈ [0; 1] describing the fact that there is or not an obstacle
in the cell. A possible definition of the probability of this
number for each possible state of the cell: emp, occ is in term
of probability density:

p(z|emp) = 2(1− z) (5)

p(z|occ) = 2z (6)

The main information is that the closez is to 1, the most
probable is the measurez, if the cell is occupied. ForP (Z|occ)
any increasing function over[0; 1] which integral is1.0 suits.
Symetrically forP (Z|emp) any decreasing function over[0; 1]
which integral is1.0 suits. We chose very simple functions:
that are linear functions and reach0 and1 at their maxima.

(a) (b)

(c) (d)

Fig. 6. (a) Probability of the ground image pixel value, knowing that the
pixel corresponds to an empty cell:P (Z|emp) for each cell. (b) Probability
of the ground image pixel value, knowing that the pixel corresponds to an
occupied cell:P (Z|occ) for each cell. (c) Probability of the ground image
pixel value, knowing that the pixel corresponds to an empty cell:P (Z|emp)
for each cell with an error model. (d) Probability of the ground image pixel
value, knowing that the pixel corresponds to an occupied cell:P (Z|occ) for
each cell with an error model. The confidence parameter is0.5 i.e. we trust
the sensor just half the time. The color scale is: green to red linearly mapped
on 0.0019 to 0.019.

D. Error model

It is just adding constant images to the likelihood images
obtained at the previous step weighted by the fault probability.
Fig. 7(b) and 7(a) show the differences between a sensor model
with and without error model. In the case of the error model,



the occupancy probability is never zero such as the model is
more tolerant to the miss-detections, and the probability that
a cell is empty is never zero too, such as the model is more
tolerant to the false alarm too. In this case, to consider that
a cell is occupied, the background probability brings by the
error model must be considered and the decision threshold
must be consequently increased. This is exactly what brings
the latency in counterpart of the error model.

(a) (b)

Fig. 7. (a) The resulting probability that the cells are occupied after the
inferrence process. (b) The resulting probability that the cells are occupied
after the inferrence process with an error model, there is a background
probability for the whole camera field of view. with use the same parameters
and color conventions as in Fig 6

V. GENERAL MODEL OF OFFBOARD CAMERA WITH NO

VISIBILITY ASSUMPTION

(a) (b)

(c) (d)

Fig. 8. (a) Moving object whom the contact points with the ground
are occulted. (b) The intersection of the viewing cone associated with the
bounding boxe and the ground plan which is far from the position of the
object. (c) Projection of the entire view cone on the ground in yellow. (d)
Projection of the part of view cone that fits the object height hypothesis (in
green).

In this section we use the same inputs as in the previous one
and in the process, the difference arises only in the drawing

of the ground occupation image. Thus we focuses only on this
part.

A. Image of the ground occupation

c) One video camera, one bounding box:We consider,
now, a more general sensor model, in the sens that the
hypthesis (3) is considered to be sometimes false. Consider
the case where the ground-object contact points are not visible
(Fig. 8(b)) in such a case the previous sensor model gives
a totally wrong ground occupation. The correct assumption
in this case is to consider that the whole wiev cone that
corresponds to the bounding box could be occupied (Fig 8(c)).
It leads to the disapearing of occluded area, because it is not
possible to make any distance distinction. Consequently the
system is less accurate but sufficient enough in a context of
multi-sensor fusion to bring informations. To reduce the size
of the area which is considered as occupied, we add to the set
{1, 2, 4} a new assumption:

5) the tracked objects have a maximal heighth.

Fig. 9. Calculus of the positionS of front vertexes of the occupied area.
They lie on the lines that join the orthogonal projectionG of the camera on
the ground and the homography projectionP of the bottom of the bounding
box on the ground. The distanceGS is obtained thanks to the Thales theorem
(Eq. 7).

In the context of a car park we fixe the maximal height to3
meters. To calculate the occupied area, we use the linearity of
the cone projection. To each vertexK of the bounding box we
can associate a view line which is the lineEK that connect
the camera focal pointE to the vertexK. For each of these
view lines associated to a bounding box, we apply the same
process. First we draw the projectionGP on the ground of
the view line (Fig. 9, 8(c) red lines on the ground). Then we
apply the Thales theorem (Fig. 9) line to calculate the position
of the pointS that is the projection on the ground ofF the
intersection of the view line with the planz = h:

GS = HF =
D − h

D
∗GP (7)

where G and H are the orthogonal projection of the
camera focal pointE on the ground and on the plan
z = h. P is obtained by the homography projection of
the bounding box pointK on the ground andF on the
plan z = h. For each view line we obtain 2 pointsP and
S. Thus for each bounding box we obtained8 points and
as the bounding box is convex, so is its projection, then
the resulting occupied area is the convex hull of these8 points.



In the particular case of a vertical bounding box in the
image: the back points of the cone projection are obtained by
the projection of the bounding box top points on the ground
thanks to the homography matrix. Whereas the front points
(Fig. 8(d)) are given by the projection (dotted lines) on the
ground of the points that lies on the planz = h.

The outside of the occupied area is drawn as free.
d) One video camera, several bounding boxes:In the

case of several bounding boxes we apply the same algorithm
as above, each pixel on the ground receives the max of the
value that each bounding box assigns for it. In this particular
case there is only two values:{0; 1} empty or occupied.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

A. Interest of the occluded labelling of the zones

Using the first sensor model, the interest of the occluded
zones arrises when a video camera can see an area which is
occluded in the field of view of an other video camera. In this
case the two informations do not disagree in the occluded zone
which leads to an accurate shape drawing in the grid during
the fusion. Thus the position and shape object are accurately
fitted. In the second sensor model the different camera will
agree in the occluded zone but disagree in the boundary of
this zone. So that with a threshold thats accept only multi-
agreement to take the decision that a cell is occupied. With this
other model the same result is obtained but the probabilities
are less distinctive and the decision threshold must be bigger.

B. Sensor model comparison

The first model is precise, but only when it hypothesis
holds. However we can assume that modern object detectors
will be able to infer the position of the ground-object contact
points even the entire object is not visible. In particular with
pedestrians, we hope that the visibility of only a part of the
body such as the head or the tronc will be sufficient enough to
obtained a feet position estimation. In such cases this model
will be the most suitable for position estimation. With the
second model, the position uncertainty allows to surround
the real position of the detected object, such that with other
viewing points or other sensors, like laser range-finders or
radar it is possible to obtained a good hull of the ground
object occupation. Thanks to the uncertainty this last model
will never give wrong information about the emptyness of an
area, which is a garantee for safety applications.

VII. C ONCLUSION AND PERSPECTIVES

In this article we present an occupancy grid fusion frame-
work with offboard video camera which show all the ad-
vantages of this kind of fusion in term of accuracy and
adaptability. Accuracy because it leads to integrate occlusion
informations which allow to make the observations coherent
and increase the fiability of the whole fusion system. And
adaptability because it is very easy to integrate different kinds
of information processing as it is shown with the presenta-
tion, here, of two different sensor models. Because it was

widely demonstrated that it suits particularly well any kind
of telemetric sensor models as a low level data process, we
promote this environment modelling as a base for a multi-
objects tracking. We use the output of this stage of fusion
process in order to extract new observations. This extraction
process decrease widely the number of observations such that
the next association stage becomes really fast. Then this article
presents just a part of our multi-target tracking plateform,
but the second part consist of a standard tracking system as
described in [11].

ACKNOWLEDGMENT

PUVAME is a project of the “Security oriented tech-
nologies” operational group of the PREDIT The partners of
PUVAME thank the French PREDIT for supporting the work
of this project.

REFERENCES

[1] O. Aycard, A. Spalanzani, J. Burlet, T. Fraichard, C. Laugier, D. Raulo,
and M. Yguel. Puvame - new french approach for vulnerable road users
safety. InIEEE International Conference on Intelligent Vehicules, 2006.
In submission.

[2] C. Blanc, L. Trassoudaine, Y. Le Guilloux, and R. Moreira. Track to
track fusion method applied to road obstacle detection. InInternational
Conference on Information Fusion, 2004.

[3] J. Borenstein and Y. Koren. The vector field histogram - fast obstacle
avoidance for mobile robots.IEEE Journal of Robotics and Automation,
7(3):278–288, June 1991.

[4] H. Cramer, U. Scheunert, and G. Wanielik. Multi sensor fusion for object
detection using generalized feature models. InInternational Conference
on Information Fusion, 2003.

[5] Alberto Elfes. Occupancy grids: a probabilistic framework for robot
perception and navigation. PhD thesis, Carnegie Mellon University,
1989.

[6] J. S. Franco and E. Boyer. Fusion of multi-view silhouette cues using a
space occupancy grid. InIEEE International Conference on Computer
Vision, 2005.

[7] D. Kortenkamp, R.P. Bonasso, and R. Murphy.AI-based mobile robots.
MIT Press, 1998.

[8] B. J. Kuipers. The spatial semantic hierarchy.Artificial Intelligence,
(119):191–233, 2000.

[9] Stan Z. Li.Markov Random Field Modeling in Image Analysis. Springer-
Verlag, 2001. Series: Computer Science Workbench, 2nd ed., 2001, XIX,
323 p. 99 illus., Softcover ISBN: 4-431-70309-8.

[10] H.P. Moravec and M.C. Martin. Robot navigation by 3d spatial evidence
grids. Technical report, Mobile Robots Laboratory, Robotics Institute,
Carnegie Mellon University, 1994.

[11] D. Schulz, W. Burgard, D. Fox, and A.B. Cremers. People tracking with
a mobile robot using sample-based joint probabilistic data association
filters. International Journal of Robotics Research (IJRR), 2003.

[12] B. Steux, C. Laurgeau, L. Salesse, and D. Wautier. A vehicule detection
and tracking system featuring monocular color vision and radar data
fusion. InIEEE International Conference on Intelligent Vehicules, 2002.

[13] S. Thrun. Learning metric-topological maps for indoor mobile robot
navigation.Artificial Intelligence, 1(99):21–71, 1999.

[14] B. Yamauchi. A frontier based approach for autonomous exploration.
In IEEE International Symposium on Computational Intelligence in
Robotics and Automation, pages 146–151, 1997.


	Introduction
	ParkNav platform
	Occupancy grid
	Definition
	Mathematical Framework

	Sensor model
	Fault modelling

	Building sensor models

	Sensor model of offboard camera with visibility of the ground-object contact points
	Image of the ground occupation
	Position uncertainty
	Building the two maps of probabilities: P(Z|Ex)
	Error model

	General model of offboard camera with no visibility assumption
	Image of the ground occupation

	Experimental results and discussion
	Interest of the occluded labelling of the zones
	Sensor model comparison

	Conclusion and perspectives
	References

