
A Service-Oriented Platform
for iTV applications deployment

Didier DONSEZ, Stéphane CHOMAT, Kiev GAMA, Walter RUDAMETKIN, Lionel TOUSEAU
Université Grenoble 1, BP 53, F38041 Grenoble Cedex 9, France

{Firstname.Lastname}@imag.fr

Abstract—Interactive television is a new field for applications
developers. However, the applications deployment has to take
into account broadcast network constraints. This demonstration
shows the design of service-oriented platform for the deployment
of modular and dynamic iTV applications. Our proposition
named OSGiTV is validated by a prototype of iTV platform
using the OSGi platform and DVB MHP standards.

Keywords-component; iTV, Service Orientation, Deployment OSGi

I. INTRODUCTION

Interactive television (iTV) is a new and promising field for
the application developers. As TV sets are ubiquitous and are
used to reach a large number of consumers, iTV sets will
probably be one of the main entry points for online services.
The new generation iTV digital terminals are now able to
visualize xHTML documents and run flash presentations or
Java applications. Applications and documents are pushed by
TV operators to millions of terminals over broadcast networks
(satellite, cable, terrestrial, 3G).

Digital Terrestrial Television (DTTV) offers many channels
and free services which change the iTV economical model
mainly based on paid subscription. One of the main effects is
the introduction to the market of a large variety of terminals
(ranging from lower-end less expensive terminals to the video
game systems) purchased by the user which "will manage"
them. This new diversity introduces new challenges to
operators and developers of interactive television applications
which must take into account the large variety of terminals
available with heterogeneous hardware capabilities and a wide
range of software configurations. However, current interactive
television middleware requires that an operator deploys
homogeneous terminals among its subscribers. Those
middlewares are generally not aware about the evolution of
deployed applications. Moreover, iTV applications design
remains monolithic, which does not facilitate the portability of
applications among several terminal runtimes and hardwares.

We think that the iTV applications as well as iTV
middlewares, could be more modular in order to enable
incremental deployment and update without needing
application reboot. In this demonstration, we propose a
platform that relies on the top of OSGi for a very large scale
deployment and the automatic execution of iTV middleware
and applications components while respecting the main
standards of this field (MPEG2-TS, DVD-MHP, JavaTV). This
demonstration shows our iTV platform including an OSGi-
based terminal, an operator server broadcasting software

installations and updates, applications data and metadata and
smartcards storing user profiles and triggering applications
launching on the terminal.

The rest of this article is organized as follows: section 2
presents our service-oriented architecture (SOA) for iTV
applications and middleware. Section 3 describes the
demonstration and section 4 briefly describes the platform and
its main components.

II. SOA FOR ITV APPLICATIONS AND M IDDLEWARE

Current interactive television middleware only allows the
development of applications with monolithic structure set at
development time. The application is a self-contained graph of
classes and resources provisioned in a single artifact (i.e. a Jar
file). Application deployment consists of putting the artifact in
a carousel-based file system and adding an entry in the
Application Information Table (AIT) as defined in DVB-MHP.

return link

Secure

Random

GRush

Gambling

XLet

Secure

Purse

CashOut

Refill

Bank
Random

JorB BlackJ

Purse

On the gambler

smartcard

On the subscriber’

terminal

On the server of

the T-Casino provider

JCRMI

Stub
RMI

Stub

RMI

Skel

JCRMI

Skel
return link

Secure

Random

GRush

Gambling

XLet

Secure

Purse

CashOut

Refill

Bank
Random

JorB BlackJ

Purse

On the gambler

smartcard

On the subscriber’

terminal

On the server of

the T-Casino provider

JCRMI

Stub
RMI

Stub

RMI

Skel

JCRMI

Skel

Fig 1 : Example of a SOCA iTV application

We propose to develop modular iTV application according
the OSGi programmation paradigm. So, the application is
designed as a dynamic graph of OSGi services implemented by
classes and resources provisioning in one or more OSGi
bundles. Services can be added, updated or removed from the
application structure at runtime as long as the consistency rules
of the application are respected. Moreover, services can be
developed using component models such as ServiceBinder,
Declarative Services or iPOJO in order to harden the
application code. The figure 1 illustrates the dynamic evolution
of our demonstration application architecture.

III. THE DEMONSTRATION APPLICATION

This iTV application allows the user to gamble money at a
casino (slot machine, poker, black jack...) using his TV set. The
T-Casino service provider gives to gamblers smartcards
containing a secure betting engine. The card refill for bettting

(Refill interface) and the cash out (CashOut interface) can be
done occasionally with the T-Casino server if the return
channel is available. The remote method calls use a RMI stub.
According to the same principle, the methods calls of the T-
Casino card use a JavaCard-RMI stub. A pseudo betting engine
allows the use of this service in demonstration mode. In our
dynamic model, the application is designed as a service graph.
The T-Casino application is consistent since the root service
TCasinoXlet can use at least one betting engine service
(Random interface) and at least one game engine service
(GameEngine interface). While running, the T-Casino card
insertion causes the deployment and the activation of the card
agent (for example a JavaCard-RMI stub) which publishs a
new service: the application has to take into account from now
this new service to perform bets with the card.

The iTV middleware components are traditionally set until
the next firmware update which compel to do a terminal reboot.
We believe that the iTV middleware can take advantage for the
OSGi dynamic model to dynamically deploy its components
(libraries of the running environment, peripheral driver) in the
same way as the applications components.

IV. THE OSGITV RUNTIME PLATFORM

The runtime platform, named OSGiTV, is decomposed in 3
subplatforms: the operator broadcasting server, the iTV
terminal and the subscriber smartcard. The next subsections
describes them as well as the data pushed by the operators.

A. Information Tables

OSGiTV uses DVB-MHP tables for managing applications,
bundles and drivers. The applications are described by the
standard AIT table. Each entry contains an application name
and an action to perform at the reception time. These actions
can be the addition (STORE), the removal (UNSTORE) or
automatic activation of the application. The standard
information is completed by two proprietary tables. The Bundle
Information Table (BIT) lists information describing the
bundles deployed by the operator. Each entry contains a list of
imported and exported packages and the list of the required and
provided services. The Driver Information Table (DIT) lists
information relating to peripherals drivers. Each entry contains
information required by the Device Access Manager (DAM)
according to the OSGi specifications. This table is used by the
terminal driver selector. All that information is extracted from
the bundles manifest and for the component metadata
(ServiceBinder) by an utility tool running on the server.

B. iTV operator platform

The role of iTV operator subplatform is essential for
managing the broadcast of the tables, applications and
middleware artifacts (ie OSGi bundles). They are broadcasted
using a Carousel-based file system (CarouselBroadaster in fig.
2) that regulary send artifacts and table chunks in multicast (IP
class D address) datagrams.

C. iTV terminal platform

The terminal platform runs over a standard OSGi
framework with preinstalled bundles. The figure 2 depicts the
main technical services. The carousel-based file system
receiver (CarouselReceiver) receives and brings together the
broadcasted files chunks. These files are then stored in the
terminal cache which manages the local file system in flash
memory or on an extra hard drive.

On reception, the information tables are notified by the
TableLocators (one by table type) which generate an event
object for each entry of a table. These objects then go to an
EventDispatcher which notifies the subscribers of this event
type. The applications manager, XletManager, subscribes to AI
type of events and updates its information base. The
XletManager starts an application when it receives an AI object
with an autostart action. For this, it delegates the application
install to the ServiceOnDemand installation service by seeking
a javax.tv.xlet.Xlet service having the XletName property
equals to the identifier in the AI. The installation manager,
called ServiceOnDemand, allows to install and to start
recursively the bundle containing the Xlet and its package
dependencies. For this, it uses its information base which is fed
by the BI events (Bundle Information) notified by the
EventDispatcher. The driver manager respects the OSGi
specification “Device Access Manager” for the installation of
the terminal’s device drivers. However according to the
broadcast network constraints, our platform implements a
DriverLocator using of the information contained in the
received BITs.

The application startup can be initiated by the operator, by
the user using a program guide (i.e. the EPGXlet) or by the
insertion of a smart card. In those 3 cases, the XletManager
takes care from startup to the reception of an AI object marked
as AUTOSTART.

D. iTV subscriber smartcard platform

The subscriber smartcard is a JavaCard card applet storing
the subscriber’s profile and the AIT for his prefered iTV
applications. The JavaCard can also host card applets securing
sensible data and processing for the iTV application as in the
case of the T-Casino’ SecureGamblingCardlet.

OSGiTV Terminal

Jar

Mosaïc

EPG

XLet

Weather

XLet

TCasino

XLet

User

Profile C.

Xlet

Manager

Service

onDemand

BIT

Event

Dispacher

Gambling

CardProxy

Grush UI

AIT

BIT

DIT

Carrousel

Receiver Carrousel

BroadCaster Extractor Jar

Local

Cache

Device

Access

Manager

AIT

DIT

AIT

HAVi

GUI

library.

OCF

library

Drivers
Drivers
Drivers

Table

Locator
Table

Locator
Table

Locator

Service

Binder

AITCardlet

SecureGamblingCardlet

OSGiTV Terminal

Jar

Mosaïc

EPG

XLet

Weather

XLet

TCasino

XLet

User

Profile C.

Xlet

Manager

Service

onDemand

BIT

Event

Dispacher

Gambling

CardProxy

Grush UI

AIT

BIT

DIT

Carrousel

Receiver Carrousel

BroadCaster Extractor Jar

Local

Cache

Device

Access

Manager

AIT

DIT

AIT

HAVi

GUI

library.

OCF

library

Drivers
Drivers
Drivers

Table

Locator
Table

Locator
Table

Locator

Service

Binder

AITCardlet

SecureGamblingCardlet

Fig 2 : Architecture of the OSGiTV deployment subplatforms.

